Appréciation de la qualité technologique d’une collection de blé tendre (Triticum aestivum L.) cultivée en Algérie

Main Article Content

Asma LAMARA

Abstract

The wheat quality requirements are diverse and depend on the wheat species cultivated, the expected end-use product and the environment in which it is produced. In this study, 34 bread wheat varieties were evaluated for several physico-chemical and rheological parameters including thousand-kernel weight, grain moisture content, grain protein content, wet and dry gluten contents, sedimentation Zeleny test value and Hagberg falling number. It was observed that the extreme min and max values vary depending on the genotype evaluated and the test used, suggesting the difficulty of grouping all the desirable characteristics in the same genetic background. The results also show that there was a positive correlation of the Zeleny sedimentation value with grain moisture content, protein content, wet and dry gluten at phenotypic and genotypic levels. This test can be used to predict the wheat technological quality during the milling process. Furthermore, this study offers to breeders’ valuable information which, in future breeding programs, can be used to develop high yielding and adapted genotypes, and appreciated by the rheological and technological quality of their end-use product.

Article Details

How to Cite
LAMARA, A. (2021). Appréciation de la qualité technologique d’une collection de blé tendre (Triticum aestivum L.) cultivée en Algérie. Algerian Journal of Biosciences, 2(1), 019–029. https://doi.org/10.57056/ajb.v2i1.37
Section
Articles

References

Benbelkacem A. The history of wheat breeding in Algeria. Proceedings of the International Symposium on Genetics and breeding of durum wheat, Rome, 27-30 MAY 2013. Publication of: Porceddu (E), Damania (AB), Qualset (CO). 2014.

FAOSTAT. Food and Agriculture Data, http://www.fao.org/faostat (23 JUNE 2020)

Shewry PR, Halford NG, Belton PS, Tatham AS. The structure and properties of gluten: an elastic protein from wheat grain. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 2002, 357;1418:133-142. DOI: https://doi.org/10.1098/rstb.2001.1024

Weegels PL, Hamer RJ, Schofield JD. Functional properties of wheat glutenin. J Cereal Sci. 1996, 23;1:1-17. DOI: https://doi.org/10.1006/jcrs.1996.0001

Schofield JD. Wheat proteins: Structure and functionality in milling and bread-making. In: Wheat: Production, Properties and Quality. UK: Blackie Academic and Professional, Glasgow; 1994. DOI: https://doi.org/10.1007/978-1-4615-2672-8_7

Shewry PR, Tatham AS. Wheat. UK: The Royal Society of Chemistry, Cambridge CB4 OWF; 2000.

Hrušková M, Faměra O. Prediction of wheat and flour Zeleny sedimentation value using NIR technique. Czech J Food Sci. 2003, 21;3:91-96. DOI: https://doi.org/10.17221/3482-CJFS

Williams P, El-Haramein FJ, Nakkoul H, Rihawi S. Crop Quality Evaluation Methods and Guidelines. International Center for Agricultural Research in the Dry Areas (ICARDA), Syria: Aleppo; 1986.

Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ. The classification and nomenclature of wheat gluten proteins: a reassessment. J Cereal Sci. 1986, 4;2:97-106. DOI: https://doi.org/10.1016/S0733-5210(86)80012-1

CNCC. Bulletin des variétés de céréales autogames. Edition du Centre National de Contrôle et de Certification des Semences et plants, Algérie: CNCC; 2015.

Mauze C, Richard M, Scotti G. Guide pratique : contrôle de la qualité des blés. France: ITCF; 1972. 12. Searle SR. Phenotypic, genetic and environmental correlations. Biometrics. 1961, 17;3:474-480. DOI: https://doi.org/10.2307/2527838

Acquaah G. Principals of plant genetics and breeding. UK: Blackwell Publishing, Exford; 2007.

Wang L, Ge H, Hao C, Dong Y, Zhang X. Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS One. 2012, 7;2:e29432. DOI: https://doi.org/10.1371/journal.pone.0029432

Botwright TL, Condon AG, Rebetzke GJ, Richards RA. Field evaluation of early vigour for genetic improvement of grain yield in wheat. Aust J Agric Res. 2002, 53;10:1137-1145. DOI: https://doi.org/10.1071/AR02007

Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW. A genetic framework for grain size and shape variation in wheat. The Plant Cell. 2010, 22;4:1046-1056. DOI: https://doi.org/10.1105/tpc.110.074153

Hannachi A, Fellahi Z, Rabti A, Guendouz A, Bouzerzour H. Combining ability and gene action estimates for some yield attributes in durum wheat (Triticum turgidum L. var. durum). J Fundament Appl Sci. 2017, 9;3:1519-1534. DOI: https://doi.org/10.4314/jfas.v9i3.17

Salmi M, Benmahammed A, Benderradji L, Fellahi Z, Bouzerzour H, Oulmi A, Benbelkacem A. Generation means analysis of physiological and agronomical targeted traits in durum wheat (Triticum durum Desf.) cross. Rev Fac Nac Agron Medellín. 2019, 72;3:8971-8981. DOI: https://doi.org/10.15446/rfnam.v72n3.77410

Shantha N, Tripathi S, Singh GP, Chaudhary HB. Effect of genotype and environment on quality traits and grain yield of wheat. Indian J Genet Plant Breed. 2007, 27;2:149-152.

Castro M, Peterson CJ, Dalla Rizza M, Dellavalle PD, Vázquez D, Ibanez V, Ross A. Influence of heat stress on wheat grain characteristics and protein molecular weight distribution. Proceedings of the 7th International Wheat Conference, Mar del Plata, Argentina, 27 NOVEMBER-2 DECEMBER 2005. Publication of: Buck (HT), Nisi (JE), Salomon (N). 2007. DOI: https://doi.org/10.1007/1-4020-5497-1_45

Labuschagne MT, Elago O, Koen E. Influence of extreme temperatures during grain filling on protein fractions, and its relationship to some quality characteristics in bread, biscuit, and durum wheat. Cereal chem. 2009, 86;1:61-66. DOI: https://doi.org/10.1094/CCHEM-86-1-0061

Prasad PVV, Pisipati SR, Momčilović I, Ristic Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF‐Tu expression in spring wheat. J Agron Crop Sci. 2011, 197;6:430-441. DOI: https://doi.org/10.1111/j.1439-037X.2011.00477.x

Mahrookashani A, Siebert S, Hüging H, Ewert F. Independent and combined effects of high temperature and drought stress around anthesis on wheat. J Agron Crop Sci. 2017, 203;6:453-463. DOI: https://doi.org/10.1111/jac.12218

El Hadef El Okki L. Valeurs d’appréciation de la qualité technologique et biochimique des nouvelles obtentions variétales de blé dur en Algérie. Mémoire de Magister, Université Ferhat Abbas Sétif 1, 2015.

Delwiche SR. Wheat endosperm compressive strength properties as affected by moisture. Trans ASAE. 2000, 43;2:365-373. DOI: https://doi.org/10.13031/2013.2713

Feillet, P. Le grain de blé composition et utilisation. Paris: INRA; 2000.

Rababah T, Alu’datt M, Al-Mahasneh M, Gammoh S, Al-Obaidy M, Tha’er Ajouly VBN. The effect of different flour extraction rates on physiochemical and rheological characteristics. Bulg J Agric Sci. 2019, 25;3:581-588.

Zhang Y, Zhang Y, He ZH, Ye GY. Milling quality and protein properties of autumn- sown Chinese wheats evaluated through multi-location trials. Euphytica. 2005, 143;1-2:209-222. DOI: https://doi.org/10.1007/s10681-005-3668-7

Otteson BN, Mergoum M, Ransom JK. Seeding rate and nitrogen management on milling and baking quality of hard red spring wheat genotypes. Crop Sci. 2008, 48;2:749-755. DOI: https://doi.org/10.2135/cropsci2007.08.0473

Edwards M. Morphological features of wheat grain and genotype affecting flour yield. Australia: PhD Thesis, Southern Cross University, Lismore, NSW; 2010.

Pasha I, Anjum FM, Butt MS, Sultan JI. Gluten quality prediction and correlation studies in spring wheats. J food qual. 2007, 30;4:438-449. DOI: https://doi.org/10.1111/j.1745-4557.2007.00133.x

Belderok B, Mesdag J, Mesdag H, Donner DA. Bread-making quality of wheat: a century of breeding in Europe. Springer Science & Business Media; 2000. DOI: https://doi.org/10.1007/978-94-017-0950-7

Fellahi Z, Hannachi A, Guendouz A, Rabti A. Bouzerzour H. Héritabilité, corrélations et gain de sélection précoce en F2 de blé tendre (Triticum aestivum L.) sous conditions semi-arides. JARA. 2019, 13;2:37-49.

Garcia del Moral LF, Rharrabti Y, Elhani S, Martos V, Royo C. Yield formation in Mediterranean durum wheat under two contrasting water regimes based on path-coefficient analysis. Euphytica. 2005, 143:213-222. DOI: https://doi.org/10.1007/s10681-005-9006-2

Fellahi Z, Hannachi A, Guendouz A, Bouzerzour H, Boutekrabt A. Genetic variability, heritability and association studies in bread wheat (Triticum aestivum L.) genotypes. Electron J plant breed. 2013, 4;2:1161-1166. DOI: https://doi.org/10.1155/2013/201851

Najafian G. Study of relationship among several bread making quality assessment indices in hexaploid wheat (Triticum aestivum L.) using correlation analysis. Qual Assur Saf Crop Foods. 2012, 4;3:148-148. DOI: https://doi.org/10.1111/j.1757-837X.2012.00156.x

Fellahi Z, Hannachi A, Oulmi A, Bouzerzour H. Analyse des aptitudes générale et spécifique à la combinaison chez le blé tendre (Triticum aestivum L.). Rev Agric. 2018, 9;1:60-70.

Fellahi Z, Hannachi A, Bouzerzour H. Expected genetic gains from mono trait and indexes based selection in advanced bread wheat (Triticum aestivum L.) population. Rev Fac Nac Agron Medellín. 2020, 73;2:9131-9141. DOI: https://doi.org/10.15446/rfnam.v73n2.77806

Yazici E, Bilgin O. Heritability estimates for milling quality associations of bread wheat in the Northwest Turkey. Int J Res Agron. 2019, 2;2:17-22. DOI: https://doi.org/10.33545/2618060X.2019.v2.i2a.18