Integration of prior information in Kaplan Meier estimator using Bayesian approach
Main Article Content
Abstract
As part of this contribution, we will illustrate the effectiveness of the Bayesian approach in estimating durations; we suggest a new definition of the Kaplan Meier Bayesian estimator based on a stochastic approximation under an informative prior. For this reason, based on the lognormal distribution, we have unconjugated a priori distributions. This method of processing makes it possible to assume that the use of the a priori data with the various suggested methods is sensitive to the choices of the parameters added.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Begin J.F. Analyse MCMC de certains modèles de diffusion avec application à la marche Européenne du carbone. Rapport Technique, Université de Montréal, Canada, 2010.
Chib S., Greenberg E. Understanding the Metropolis-Hastings algorithm. The American Statistician.1995, 49, 327–335. DOI: https://doi.org/10.1080/00031305.1995.10476177
Hastings W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 1970, 57, 97-109. DOI: https://doi.org/10.1093/biomet/57.1.97
Held U. Représentation graphique et comparaison de courbes de survie. Forum Med Suisse.2010, 10(33),548-550. DOI: https://doi.org/10.4414/fms.2010.07252
Khizanov V.G., Maĭboroda R.A modified Kaplan-Meier estimator for a model of mixtures with varying concentrations. Theor. Probability and Math. Statist. 92 (2016), 109-116. DOI: https://doi.org/10.1090/tpms/986
Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. Equation of state calculations by fast computing machines. The Journal of Chemical Physics. 1953, 21, 1087-1092. DOI: https://doi.org/10.1063/1.1699114
Robert C.P. Le choix Bayésien : principes et pratiques. Springer. 2006.
Rossa A. and Zielinski R. Locally Weibull-Smoothed Kaplan–Meier Estimator, Institute of Mathematics Polish Academy of Sciences, Preprint 599. 1999.
Rossa A., & Zieliński R. A simple improvement of the Kaplan-Meier estimator. Communications in Statistics-Theory and Methods. 2002, 31(1), 147-158. DOI: https://doi.org/10.1081/STA-120002440
Shafiq M., Shah S., & Alamgir M. Modified Weighted Kaplan Meier Estimator. Pakistan Journal of Statistics and Operation Research. 2007, 3(1), 39-44. DOI: https://doi.org/10.18187/pjsor.v3i1.75