Level and Health Risk Evaluation of Heavy Metals and Microorganisms in Urban Soils of Lagos, Southwest Nigeria

Main Article Content

Tajudeen O. Yahaya


Heavy metal and microbial pollution of the environment are linked to the increasing prevalence of diseases worldwide. Accordingly, this study assessed the safety of urban soils in Lagos, Nigeria, with regard to the levels of lead (Pb), nickel (Ni), cadmium (Cd), copper (Cu), chromium (Cr), zinc (Zn), and microorganisms. Soil samples were collected from Iwaya, Makoko, and Ilaje areas of the city and subjected to atomic absorption spectroscopy (AAS) and microbiological examinations using standard protocols. The mean values obtained for the heavy metals and microorganisms were compared with the World Health Organization (WHO) permissible limits. The average daily oral ingestion (ADOI), average daily dermal ingestion (ADDI), and the hazard quotient (HQ) of the heavy metals were also calculated. The AAS indicated that the soils in the three areas contained non-permissible levels of the evaluated heavy metals, except Cu and Cd. The microbiological examinations also showed that the soils contained abnormal levels of heterotrophic bacteria (HB), hydrocarbon utilizing bacteria (HUB), heterotrophic fungi (HF), and hydrocarbon utilizing fungi (HUF). The ADOI of the heavy metals in the three areas were above the recommended levels, while ADDI were normal. Moreover, the HQ of oral ingestion of each heavy metal except Cr was greater than one, while the HQ of dermal ingestion of the heavy metals was less than one. These findings suggest that the soils could predispose the residents in the areas to diseases. Thus, there is a need for regular environmental sanitation and environmental pollution control in the areas, and personal hygiene.

Article Details

How to Cite
Yahaya, T. O. (2020). Level and Health Risk Evaluation of Heavy Metals and Microorganisms in Urban Soils of Lagos, Southwest Nigeria. Algerian Journal of Biosciences, 1(2), 051–060. https://doi.org/10.57056/ajb.v1i2.27


Briggs D. (2003) Environmental pollution and the global burden of disease. Br Med Bull 2003; 68:1-24.doi:10.1093/bmb/ldg019. 2. Landrigan PJ, Fuller R. Global health and environmental pollution. Int J Public Health 2015; 60:761–762. https://doi.org/10.1007/s00038-015-0706-7. DOI: https://doi.org/10.1007/s00038-015-0706-7

Eqani S, Khalid R, Bostan N. Human lead (Pb) exposure via dust from different land use settings of Pakistan: a case study from two urban mountainous cities. Chemosphere 2016; 155: 259–265. https://doi.org/10.1016/j.chemosphere.2016.04.036. DOI: https://doi.org/10.1016/j.chemosphere.2016.04.036

WHO. 7 million deaths annually linked to air pollution. 2014. Available at http://www.who.int/phe/health_topics/ outdoorair/databases/en/. Accessed September 8, 2020.

WHO. Burden of disease from Household Air Pollution for 2012. WHO, Geneva, 2014. Available at http://www. who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24March2014.pdf?ua=1. (Accessed September 1, 2020).

Masindi V, Muedi KL. Environmental Contamination by Heavy Metals. Hosam El-Din M. Saleh and Refaat F. Aglan, IntechOpen. 2018. DOI:10.5772/intechopen.76082. Available at https://www.intechopen.com/books/heavy metals/environmental-contamination-by-heavy-metals. DOI: https://doi.org/10.5772/intechopen.76082

Ali H, Khan E, Ilahi I Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J Chem 2019. Article ID 6730305. https://doi.org/10.1155/2019/6730305. DOI: https://doi.org/10.1155/2019/6730305

Järup L. Hazards of heavy metal contamination. Br Med Bull 2003; 68:167-182. doi:10.1093/bmb/ldg032. DOI: https://doi.org/10.1093/bmb/ldg032

Banfalvi G. Cellular Effects of Heavy Metals. Netherlands, London, New York: Springer. 2011. DOI: https://doi.org/10.1007/978-94-007-0428-2

Bhargava P, Gupta N, Vats S and Goel R. Health Issues and Heavy Metals. Austin Journal Environ Toxicol 2017; 3(1): 1018.

Morais S, Costa FG, Pereira M L. Heavy metals and human health. In: Oosthuizen J, editor. Environmental health – emerging issues and practice. 2012. pp. 227–246. [InTech]. DOI: https://doi.org/10.5772/29869

Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 2014; 7(2):60-72. doi:10.2478/intox-2014-0009. DOI: https://doi.org/10.2478/intox-2014-0009

Mahurpawar M. Effects of Heavy Metals on Human Health. Int J Res – Granthaalayah 2015;1 (special issue): 1-7. DOI: https://doi.org/10.29121/granthaalayah.v3.i9SE.2015.3282

Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress Part I: mechanisms involved in metal-induced oxidative damage. Curr Top Medi Chem 2001; 1 (6): 529–539. https://doi.org/10.2174/1568026013394831. DOI: https://doi.org/10.2174/1568026013394831

Yahaya T, Okpuzor J. Variation in Exposure to Cement Dust in Relation to Distance from Cement Company. Res Environ Toxicol 2011;5: 203212. DOI: 10.3923/rjet.2011.203.212. DOI: https://doi.org/10.3923/rjet.2011.203.212

Jeffery S, van der Putten WH. Soil Borne Diseases of Humans. Joint Research Commission Scientific and Technical Reports. 2011. Pp 1-56.

Awisan J, Venchito DJ, Angelica B, Lizlotte C, Deanna MF. Aerobic pathogenic and opportunistic bacteria of public health significance in Ireland dumpsites soil. SLU Research Journal 2011; 42(1):27-37.

Steffan JJ, Brevik EC, Burgess LC, Cerdà A. The effect of soil on human health: an overview. Eur J Soil Sci 2018; 69(1):159-171. doi: 10.1111/ejss.12451. DOI: https://doi.org/10.1111/ejss.12451

Alberts B, Johnson A. Molecular Biology of the Cell. 4th edition. New York: Garland Science and Cell Biology of Infection. 2002. Available at https://www.ncbi.nlm.nih.gov/books/NBK26833/.Accessed A September 2, 2020.

Nyandjou YMC, Yakubu SE, Abdullahi IO, Machido DA. Enteric Bacteriaof Public Health Significance Isolated From Zaria Metropolis Dumpsite Soil. Sci World J 2018; 13(4):30-34. 21. Tresch S, Moretti M, Le Bayon RC, Mäder P, Zanetta A, Frey D, Fliessbach A. A Gardener's Influence on Urban Soil Quality. Front Environ Sci 2018;6:25. doi:10.3389/fenvs.2018.00025. DOI: https://doi.org/10.3389/fenvs.2018.00025

Yahaya et al / Algerian Journal of Biosciences 01(02) (2020) 051–060 58

Holcomb DA, Knee J, Sumner T, Adriano Z, Bruijn E, Nalá R, Cumming O, (2020). Humanfecal contamination of water, soil, and surfaces in households sharing poor-quality sanitation facilities in Maputo, Mozambique. Int J Hyg Environ Health226-113496.https://doi.org/10.1016/j.ijheh.2020.113496. DOI: https://doi.org/10.1016/j.ijheh.2020.113496

Ashraf MA, Maah MJ, Yusoff I. Soil Contamination, Risk Assessment and Remediation, Environmental Risk Assessment of Soil Contamination, Maria C. Hernandez-Soriano, IntechOpen. 2014. DOI: 10.5772/57287. Available at https://www.intechopen.com/books/environmental-risk-assessment-of-soil.

Wu J. Urban ecology and sustainability: the state-of-the-science and future directions. Landsc Urban Plan 2014; 125: 209–221. 10.1016/j.landurbplan..01.018. DOI: https://doi.org/10.1016/j.landurbplan.2014.01.018

McBride, M. B. Toxic metals in sewage sludge-amended soils: Has promotion of beneficial use discounted the risks? Adv Environ Res 2002; 8 (1): 5–19. doi: 1O.1016/S1093-0191(02)00141-7. DOI: https://doi.org/10.1016/S1093-0191(02)00141-7

Mackay AK, Taylor MP, Munksgaard NC, Hudson-Edwards KA, Burn-Nunes L. Identification of environmental lead sources and pathways in a mining and smelting town: mount Isa, Australia. Environ Pollut 2013; 180: 304–311.https://doi.org/10.1016/j.envpol.2013.05.007. DOI: https://doi.org/10.1016/j.envpol.2013.05.007

Li G, Sun GX, Ren Y, Luo XS. Urban soil and human health: a review. Eur J Soil Sci 2018 (special issue): 1-21. doi: 10.1111/ejss.12518. DOI: https://doi.org/10.1111/ejss.12518

Oyinloye MA, Olamiju IO, Popoola OO. Urban renewal strategies in developing nations: A focus on Makoko, Lagos State, Nigeria. J Geogr Reg Plan 2017; 10(8): 229-241.https://doi.org/10.5897/JGRP2017.0631. DOI: https://doi.org/10.5897/JGRP2017.0631

Ojeh VN, Balogun AA, Okhimamhe AA. Urban-Rural Temperature Differences in Lagos. Climate 2016; 4(2), 29; https://doi.org/10.3390/cli4020029. DOI: https://doi.org/10.3390/cli4020029

Famuyiwa AO, Lanre-Iyanda YA, Osifeso O. Impact of Land Use on Concentrations of Potentially Toxic Elements in Urban Soils of Lagos, Nigeria. J Health Pollut 2018; 8 (19):180904. doi: 10.5696/2156-9614-8.19.180904. DOI: https://doi.org/10.5696/2156-9614-8.19.180904

Gebeyehu HR, Bayissa LD. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS one 2020; 15 (1): e0227883. https://doi.org/ 10.1371/journal.pone.0227883. DOI: https://doi.org/10.1371/journal.pone.0227883

Yahaya T, Doherty VF, Akinola OS, Shamsudeen A. Heavy Metal Profile and Microbial Counts of Selected Sachet Water Brands in Birnin Kebbi. Ife J Sci 2019; 21 (1): 229-234. https://dx.doi.org/10.4314/ijs.v21i1.20. DOI: https://doi.org/10.4314/ijs.v21i1.20

Brock TD. Membrane Filtration: A User's Guide and Reference Manual. Madison, Wis.:Science Tech, Inc. 1983.

Vieira FCE, Naha E. Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol Res 2005; 160 (2): 197-202. https://doi.org/10.1016/j.micres.2005.01.004. DOI: https://doi.org/10.1016/j.micres.2005.01.004

Yahaya T, Oladele E, Sifau M, Audu M, Bala J, Shamsudeen A. Characterization and Cytogenotoxicity of Birnin Kebbi Central Abattoir Wastewater. UJESR2020; 5 (special issue): 63-70.

Abiola C, Oyetayo VO. Isolation and Biochemical Characterization of Microorganisms Associated with the Fermentation of Kersting’s Groundnut (Macrotyloma geocarpum). Res J Microbiol 2016; 11:47-55. DOI: 10.3923/jm.2016.47.55. DOI: https://doi.org/10.3923/jm.2016.47.55

United State Environmental Protection Agency.RiskAssessmentGuidanceforSuperfundVolumeI:HumanHealth Evaluation Manual(PartE,SupplementalGuidanceforDermalRiskAssessment); USEPA: Washington DC,USA,2004.

Pan L. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China. Environ Sci Pollut Res 2016; 23:19330–19340, https://doi.org/10.1007/s11356-0167044-z. DOI: https://doi.org/10.1007/s11356-016-7044-z

United States Environmental Protection Agency. Exposure Factors Handbook2011 Edition (Final). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F. 2011.

Atanassov I. New Bulgarian soil pollution standards. Bulgarian J Agricul Sci2007; 14: 68–75.

Adeyi AA, Babalola BA. Lead and Cadmium Levels in Residential Soils of Lagos and Ibadan, Nigeria. J Health Pollut 2017; 7 (13):42-55. DOI: 10.5696/2156-9614-7-13.42. DOI: https://doi.org/10.5696/2156-9614-7-13.42

Hamad SH, Schauer JJ, Shafer MM, Al-Rheem EA, Skaar PS, Heo J, et al. Risk assessment of total and bioavailable potentially toxic elements (PTEs) in urban soils of Baghdad-Iraq. Sci Total Environ 2014;1: 494-495():39-48. https://doi.org/10.1016/j.scitotenv.2014.06.006. DOI: https://doi.org/10.1016/j.scitotenv.2014.06.006

Nkwunonwo UC, Odika PO, Onyia NI. A Review of the Health Implications of Heavy Metals in Food Chain in Nigeria. Scie World J 2020. Article ID: 6594109. https://doi.org/10.1155/2020/6594109. DOI: https://doi.org/10.1155/2020/6594109

Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: Human Health and Environmental Toxicology. Int J Environ Res Public Health. 2020; 21;17(3):679. doi: 10.3390/ijerph17030679. DOI: https://doi.org/10.3390/ijerph17030679

Taylor AA, Tsuji JS, Garry MR. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environ Manag 2020;65 :131–159. https://doi.org/10.1007/s00267-019-01234-y. DOI: https://doi.org/10.1007/s00267-019-01234-y

Plum LM, Rink L, Haase H. The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 2010; 7(4):1342-65. doi:10.3390/ijerph7041342. DOI: https://doi.org/10.3390/ijerph7041342

Sun H, Brocato J, Costa M. Oral Chromium Exposure and Toxicity. Curr Environ HealthRep 2015;2 (3):295-303. doi: 10.1007/s40572-015-0054-z. DOI: https://doi.org/10.1007/s40572-015-0054-z

World Health Organization. International year of freshwater. General assembly resolution A/RES/55/196. 2003. Available at http://www.wateryear2003.org/.(Accessed August 18, 2020).

Adedeji OH, Olayinka OO, Tope-Ajayi OO, Awosika A. Spatial Distribution and Health Risk Assessment of Heavy Metals in Urban Parks and Gardens Soils in Lagos State, Nigeria. J Agri Sci Environ 2017; 18 (1 &2):16-35. DOI: https://doi.org/10.51406/jagse.v18i1.1910

Peter E, Adeniyi GB. Spatial Relationships of Urban Land Use, Soils and Heavy Metal Concentrations in Lagos Mainland Area. J Appl Sci Environ Manage 2011;15 (2) 391 399. DOI: https://doi.org/10.4314/jasem.v15i2.68533

Adedeji OH, Olayinka OO, Tope-Ajayi OO. Spatial Distribution and Health Risk Assessment of Soil Pollution by Heavy Metals in Ijebu-Ode, Nigeria. J Health Pollut 2019;9 (22):190601. doi: 10.5696/2156-9614-9.22.190601. DOI: https://doi.org/10.5696/2156-9614-9.22.190601

Durowoju OS, Edokpayi JN, Popoola OE, Odiyo JO. Health Risk Assessment of Heavy Metals on Primary School Learners from Dust and Soil within School Premises in Lagos State, Nigeria. IntechOpen Chapter 18, pp 320-336. http://dx.doi.org/10.5772/intechopen.74741. DOI: https://doi.org/10.5772/intechopen.74741

Famuyiwa AO, Davidson CM, Oyeyiola AO, Ande S, Lanre‐Iyanda Y, Babajide SO. Pollution characteristics and health risk assessment of potentially toxic element school playground soils: A case study of Lagos, Nigeria. Hum and Ecolog Risk Assess 2019; 25 (7): 1729-1744. https://doi.org/10.1080/10807039.2018.1460192. DOI: https://doi.org/10.1080/10807039.2018.1460192

Ullah A, Maksud MA, Khan SR, Lutfa LN, Quraishi SB. Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. Toxicol Rep 2017; 4: 574–579. https://doi.org/10.1016/j.toxrep.2017.10.002. DOI: https://doi.org/10.1016/j.toxrep.2017.10.002

Taiwo MO, Onatunde OO, Bamisile O, Nwachukwu BC, Sakariyau AO. Assessment of Soil Microorganisms, Heavy Metal Levels and Natural Radionuclei Concentrations of Three Electronic Waste Dumpsites in Nigeria. Int J MicrobiolRes 2018; 9 (3): 81-88. DOI: 10.5829/idosi.ijmr.81.88.

Omotayo AE, Simeon OM, Amund OO. Microbial Qualities of Vegetables, Water and Soils from Vegetable Gardens in Lagos State, Nigeria. Nigerian Journal Microbiol 2017;31(1): 3763-3767.

Doron S, Gorbach SL. Bacterial Infections: Overview. Int Encyclop Public Health 2008; 273-82. https://dx.doi.org/10.1016%2FB978-012373960-5.00596-7. DOI: https://doi.org/10.1016/B978-012373960-5.00596-7

Popoff MR. Multifaceted Interactions of Bacterial Toxins with the Gastrointestinal Mucosa. Future Microbiol 2011; 6 (7):763-797.https://doi.org/10.2217/fmb.11.58. DOI: https://doi.org/10.2217/fmb.11.58

Antonissen G, Martel A, Pasmans F, Ducatelle R, Verbrugghe E, Vandenbroucke V. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins (Basel) 2014; 6 (2):430-52. doi: 10.3390/toxins6020430. DOI: https://doi.org/10.3390/toxins6020430

Mena KD, Gerba C. P. Risk assessment of Pseudomonas aeruginosa in water. Rev Environ Contaminat Toxicol 2009; 201:71-115. doi:10.1007/978-1-4419-00326_3. DOI: https://doi.org/10.1007/978-1-4419-0032-6_3

Gautam AK, Sharma S, Avasthi S, Bhadauria R. Diversity, Pathogenicity and Toxicology of A. niger: An Important Spoilage Fungi. Res JMicrobiol 2011; 6: 270-280. DOI: 10.3923/jm.2011.270.280. DOI: https://doi.org/10.3923/jm.2011.270.280

Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin MicrobioRev 2000; 13(2):236-301. doi: 10.1128/cmr.13.2.236-301.2000. DOI: https://doi.org/10.1128/CMR.13.2.236

Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P.Petroleum Hydrocarbon-Degrading Bacteria for the Remediation of Oil Pollution Under Aerobic Conditions: A Perspective Analysis. Front Microbiol 2018; 3;9:2885. doi: 10.3389/fmicb.2018.02885. DOI: https://doi.org/10.3389/fmicb.2018.02885

Amanidaz N, Zafarzadeh A, Mahvi AH. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks. Iran Journal Public Health 2015; 44(12):1685-92.

WHO. Guidelines for Drinking water- Quality: Incorporating the first and second addenda volume1: Recommendations. World Health Organization, Geneva, Switzerland. 2008.