Characterization and acute toxicity evaluation of the MgO Nanoparticles Synthesized from Aqueous Leaf Extract of Ocimum basilicum L

Main Article Content

Samir DEROUICHE

Abstract

The aim of this study was to prepare magnesium oxide nanoparticles (MgONPs) using aqueous leave extract of Ocimum basilicum L. and to evaluate their acute toxicity. The characteristics of biosynthesized MgO powder was analyzed by UV–Vis spectroscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The acute toxicity test of MgONPs was applied in Wistar albino rats with different concentration. Results showed that the broad bell-shaped spectrum band was obtained by UV–Vis spectroscopy indicates the formation of MgO. The SEM images provided further insight into the shape and size of MgO which to be ranging under 440 nm. Fourier transform infrared (FTIR) spectroscopy detected the vibration of the Mg─O bond that indicate the presence of magnesium oxide nanoparticles (MgO). In this study, the toxicity test showed no mortality or behavioral change in low dose of MgNPs (250 mg / kg b.w) but we observed that 50% of rats have died when treated with high dose of MgNPs (500 mg/kg b.w.). This study confirmed that aqueous extract of Ocimum basilicum L. has potential properties as biocatalyst for the biosynthesis of MgONPs without any toxicity under dose 250 mg/kg in rats.

Article Details

How to Cite
DEROUICHE, S. (2020). Characterization and acute toxicity evaluation of the MgO Nanoparticles Synthesized from Aqueous Leaf Extract of Ocimum basilicum L. Algerian Journal of Biosciences, 1(1), 1–6. https://doi.org/10.57056/ajb.v1i1.18
Section
Articles

References

Khan AI, Saeed KB, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019; 12: 908-931. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011

Danquah A, Mory S. Application of nanotechnology in bioengineering industry and its potential hazards to human health and the environment. J Pharm Innov. 2017; 6(7): 49-53.

Saini R, Saini S, Sharma S. Nanotechnology: the future medicine. J Cutan Aesthet Surg. 2010; 3(1): 32-3. doi: 10.4103/0974-2077.63301. DOI: https://doi.org/10.4103/0974-2077.63301

Mobasser Sh, Firoozi AA. Review of Nanotechnology Applications in Science and Engineering. J Civ Eng Urb. 2016; 6(4): 84-93.

Atoussi O, Chetehouna S, Derouiche S. Biological properties and Acute Toxicity Study of Copper oxide nanoparticles prepared by aqueous leaves extract of Portulaca oleracea (L). Asian J. Pharm. Res. 2020; 10(2):89-94. DOI: https://doi.org/10.5958/2231-5691.2020.00017.9

Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—a Review. Biol Trace Elem Res. 2020; 193: 118–129. doi.org/10.1007/s12011-019-01706-6 DOI: https://doi.org/10.1007/s12011-019-01706-6

Vergheese M, Vishal SK. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J Pharmacogn Phytochem. 2018; 7(3): 1193-1200.

Chetehouna S, Atoussi O, Derouiche S. Biological Activity and Toxicological Profile of Zinc Oxide Nanoparticles Synthesized by Portulaca oleracea (L) Leaves Extract. Adv Nanomed Nanotechnol Res. 2020; 2(2): 125-133.

Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W. Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia solanacearum. Front. Microbiol. 2018; 9: 790. doi: 10.3389/fmicb00790. DOI: https://doi.org/10.3389/fmicb.2018.00790

Solabomi O, Ogunyemia B, Zhanga F, Abdallaha Y, Zhanga M, Wangc Y, Guochang Sunc, Qiua W, Li B. Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2. Artif Cells Nanomed Biotechnol. 2019; 47(1): 2230-2239, doi: 10.1080/21691401.2019.1622552. DOI: https://doi.org/10.1080/21691401.2019.1622552

Derouiche S, Abbas K, Djermoune M. Polysaccharides and ascorbic acid content and the effect of aqueous extract of portulaca oleracea in high-fat diet-induced obesity, dyslipidemia and liver damage in albino wistar rats. Algerian J arid environ. 2017; 7(2): 16-26. DOI: https://doi.org/10.12816/0046095

Balasubramani S, Kumar-Moola A, Vivek K, Ranjitha-Kumari KD. Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus)., Microb Pathog. 2018; 125: 475–485. DOI: https://doi.org/10.1016/j.micpath.2018.10.017

Derouiche S, Degachi O, Gharbi K. Phytochemistry analysis and modulatory activity of Portulacae oleracea and Aquilaria malaccensis extracts against High-fructose and high-fat diet induced immune cells alteration and heart lipid peroxidation in Rats. Int Res J Biol Sci. 2019; 8(4): 6-11. DOI: https://doi.org/10.20510/ukjpb/7/i2/182379

Prasanth R, Dinesh Kumar S, Jayalakshmi A, Singaravelu G, Govindaraju K, Ganesh-Kumar V. Green synthesis of magnesium oxide nanoparticles and their antibacterial activity. Indian J Mar Sci. 2019; 48(8): 1210-1215.

Kaouachi A, Derouiche S. Phytochemical analysis, DPPH antioxidant activity and Acute toxicity of bark aqueous extracts of Pinus halepensis. Res. J. Chem Env Sci. 2018; 6(3): 86-91.

Khair-ul-Bariyah S, Ikram M. Ocimum Basilicum: A Review on Phytochemical and Pharmacological Studies. Pak J Chem. 2012; 2(2):78-85. DOI: https://doi.org/10.15228/2012.v02.i02.p05

Enobong RE, Violette NA, Anastecia OO, Davies ON. Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. Int. Nano Lett. 2020; 10:43–48.doi.org/10.1007/s40089-019-00290-w DOI: https://doi.org/10.1007/s40089-019-00290-w

Almontasser A, Parveen A, Azam A. Synthesis, Characterization and antibacterial activity of Magnesium Oxide (MgO) nanoparticles. Mater Sci Eng. 2019; 577: 1-10. doi:10.1088/1757-899X/577/1/012051. DOI: https://doi.org/10.1088/1757-899X/577/1/012051

Narendhran S, Manikandan M, Shakila PB. (). Antibacterial, antioxidant properties of Solanum trilobatum and sodium hydroxide-mediated magnesium oxide nanoparticles: a green chemistry approach. Bull Mater Sci. 2019; 42(3). 1-8. DOI: https://doi.org/10.1007/s12034-019-1811-7

Nemade KR, Waghuley SA. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation. Int J Met. 2014, 1-4. doi:10.1155/2014/389416 DOI: https://doi.org/10.1155/2014/389416

S. C. Prasanna, M. Poongani, S. Karpagam, IOSR Journal of Pharmacy and Biological Sciences 10 (2015) 24-27.

Yasmine A, Solabomi-Olaitan O, Amro A, Muchen Z, Xianxian H, Ezzeldin I, Afsana H, Hatem F, Bin L, Jianping C. The Green Synthesis of MgO Nano-Flowers Using Rosmarinus officinalis L. (Rosemary) and the Antibacterial Activities against Xanthomonas oryzae pv. Oryzae. Biomed Res Int. 2019; 2019: 5620989. doi: 10.1155/2019/5620989 DOI: https://doi.org/10.1155/2019/5620989

Sushma JN, Prathyusha D, Swathi G. Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea—characterization and in vitro antioxidant studies. Appl Nanosci. 2016; 6: 437- 444. doi.org/10.1007/s13204-015-0455-1. DOI: https://doi.org/10.1007/s13204-015-0455-1

Nabeshi HT, Yoshikawa K, Matsuyama Y, Nakazato A, Arimori M, Isobe S, Tochigi S, Kondoh T, Hirai T, Akase T, Yamashita K, Yamashita T, Yoshida K, Nagano Y, Abe Y, Yoshioka H, Kamada T, lmazawa N, Itoh S, Tsunoda I, Tsutsumi Y. Size-dependent cytotoxic effects of amorphous silica nanoparticles on Langerhans cells". An Int J Pharm Sci. 2010; 65(3): 199-201. doi : 10.1691/ph.2010.9268

Sakai N, Matsui Y, Nakayama A, Tsuda A, Yoneda M. Functional-dependent and size-dependent uptake of nanoparticles in PC 12. J Phys Conf Ser. 2011; 304(1): 1-10. doi : 10.1088/1742-6596/304/1/012049.. DOI: https://doi.org/10.1088/1742-6596/304/1/012049

Imani MM, Safaei M. Optimized Synthesis of Magnesium Oxide Nanoparticles as Bactericidal Agents J Nanotechnol. 2019: Article ID 6063832, 6 pages. doi.org/10.1155/2019/6063832. DOI: https://doi.org/10.1155/2019/6063832

Balakrishnana G, Velavan R, Mujasam KB, Raslan EH. Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys. 2020; 16: 103013. doi.org/10.1016/j.rinp.2020.103013. DOI: https://doi.org/10.1016/j.rinp.2020.103013

Noori AJ, Kareem FA. The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement. Heliyon 2019; 5: 1-7. doi.org/10.1016/j.heliyon.2019.e02568. DOI: https://doi.org/10.1016/j.heliyon.2019.e02568

Avadhesh KY, Prabhakar S. A Review of Structure of Oxide Glasses by Raman Spectroscopy. RSC Advances. 2015. doi: 10.1039/c0xx00000x.

Mazaheri N, Naghsh N, Karimi A, Salavati H. In vivo Toxicity Investigation of Magnesium Oxide Nanoparticles in Rat for Environmental and Biomedical Applications. Iranian J Biotech. 2019; 7 (1): 9 pages. doi: 10.21859/ijb.1543. DOI: https://doi.org/10.21859/ijb.1543