The Impact of Cerium Oxide Nanoparticles on Reactive Oxygen Species (ROS) Release Rate in Mice Organs

Main Article Content

Ikhazuagbe Ifijen
Selina Ilunakan Omonmhenleb

Abstract

The impact of exposing significant mouse organs to cerium oxide nanoparticles (CeO2 NPs) has received considerable attention in the literature, but a comprehensive review on this topic is lacking. This review aims to address this gap by examining the influence of CeO2 NPs on the release rate of reactive oxygen species (ROS) in various organs of mice. CeO2 NPs have demonstrated potential therapeutic applications due to their ROS-scavenging abilities, which are relevant to oxidative stress-related diseases. Recent studies investigating the effect of CeO2 NPs on ROS release rate in organs such as the liver, spleen, lung, and brain are highlighted in this article. The findings reveal a complex interaction between CeO2 NPs and the ROS system, influenced by factors such as particle dose, size, and surface chemistry. Furthermore, the impact of CeO2 NPs on ROS release rate is organ-specific and dependent on the tissue microenvironment. The review also addresses the potential toxicity of CeO2 NPs and emphasizes the need for further research to better comprehend their mechanisms of action and long-term effects. By providing valuable insights into the influence of CeO2 NPs on ROS release rate in mice organs, this review holds significant implications for the therapeutic applications of CeO2 NPs in oxidative stress-related diseases. This review contributes to the existing body of knowledge by examining the impact of CeO2 NPs on ROS release rate in various mouse organs

Article Details

How to Cite
Ifijen, I., & Omonmhenleb, S. I. (2023). The Impact of Cerium Oxide Nanoparticles on Reactive Oxygen Species (ROS) Release Rate in Mice Organs . Algerian Journal of Biosciences, 4(1), 026–044. https://doi.org/10.57056/ajb.v4i1.108
Section
A review

References

Ifijen I.H., Anegbe B. Nanosized cadmium selenide thin coatings for possible utilization in optoelectronics. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. The Min Met Mater Ser Springer Cham. 2023; 353–363. https://doi.org/10.1007/978-3-031-22524-6_33. DOI: https://doi.org/10.1007/978-3-031-22524-6_33

Maliki M., Ifijen I.H., Ikhuoria E.U., Jonathan EM., Onaiwu G.E., Archibong U.D., Ighodaro A. Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties. Int Nano Lett. 2022; 12: 379–398. DOI: https://doi.org/10.1007/s40089-022-00380-2

Ifijen I.H., Jonathan E.M., Jacob J.N., Nyaknno U.U., Archibong U.D. Synthesis of Polydispersed P(St-MMA-AA) Microspheres and Fabrication of Colloidal Crystals with non-Compact Morphology. Tanz J Sci. 2022; 48(1): 140-147. DOI: https://doi.org/10.4314/tjs.v48i1.13

Jonathan E.M., Ifijen I.H., Mokobia K.E., Mokobia K.E., Okeke E.I., Omoruyi C.I., Anegbe B. A Review on the heightened mechanical features of nanosilica-based concrete and the response of human fibroblasts to nanosilica. Biomed Mater Devices. 2022. https://doi.org/10.1007/s44174-022-00013-4. DOI: https://doi.org/10.1007/s44174-022-00013-4

Ifijen I.H., Itua A.B., Mailiki M., Ize-Iyamu C.O., Omorogbe S.O., Aigbodion A.I., Ikhuoria E.U. The removal of nickel and lead ions from aqueous solutions using green synthesized silica microparticles. Heliyon 2020; 6 (9): e04907. DOI: https://doi.org/10.1016/j.heliyon.2020.e04907

Ifijen I.H., Mailiki M. A comprehensive review on the synthesis and photothermal cancer therapy of titanium nitride nanostructures. Inorganic and Nano-Metal Chem. 2022; 5: 211–225.

Ifijen I.H., Ikhuoria E.U., Omorogbe S.O., Anegbe B., Jonathan E.M., Chikaodili D.I. Chemical, plant and microbial mediated synthesis of tin oxide nanoparticles: antimicrobial and anticancer potency. Braz J Chem Eng. 2023. https://doi.org/10.1007/s43153-023-00315-0. DOI: https://doi.org/10.1007/s43153-023-00315-0

Omoruyi I.C., Omoruyi J.I., Aghedo O.N., Archibong U.D., Ifijen I.H. Application of magnetic iron oxide nanostructures in drug delivery: a compact review. in: TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The Min Met Mater Ser. Springer Cham. 2023; 229–242. https://doi.org/10.1007/978-3-031-22524-6_22. DOI: https://doi.org/10.1007/978-3-031-22524-6_22

Mokobia K.E., Ifijen I.H., Ikhuoria E.U. ZnO-NPs-coated implants with osteogenic properties for enhanced osseointegration. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min Met Mater Ser Springer Cham.2023; 288–300. https://doi.org/10.1007/978-3-031-22524-6_27. DOI: https://doi.org/10.1007/978-3-031-22524-6_27

Ifijen I.H., Udokpoh N.U., Maliki M., Ikhuoria E.U., Obazee E.O. A Review of nanovanadium compounds for cancer cell therapy. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. The Min Met Mater Ser Springer Cham. 2023; 665–674. https://doi.org/10.1007/978-3-031-22524-6_59. DOI: https://doi.org/10.1007/978-3-031-22524-6_59

Ifijen I.H., Maliki M., Udokpoh N.U., Odiachi I.J., Atoe B. A Concise review of the antibacterial action of gold nanoparticles against various bacteria. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. The Min Met Mater Ser Springer Cham. 2023; 655–664. https://doi.org/10.1007/978-3-031-22524-6_58. DOI: https://doi.org/10.1007/978-3-031-22524-6_58

Maliki M, Omorogbe SO, Ifijen IH, Aghedo ON, Ighodaro A. Incisive review on magnetic iron oxide nanoparticles and their use in the treatment of bacterial infections. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. The Min Met Mater Ser Springer Cham. 2023; 487–498. https://doi.org/10.1007/978-3-031-22524-6_44. DOI: https://doi.org/10.1007/978-3-031-22524-6_44

Ifijen I.H., Ikhuoria E.U. A simple technique for the fabrication of colour tunable P(St-BA- AA) colloidal crystal microdots on ink-jet paper. Heliyon 2020; 6(6): e04196. DOI: https://doi.org/10.1016/j.heliyon.2020.e04196

Ifijen I.H., Ikhuoria E.U., Omorogbe S.O. Correlative studies on the fabrication of poly (styrene-methyl-methacrylate-acrylic acid) colloidal crystal films. J dispersion sci technol. 2018; 40(7): 1023-1030. DOI: https://doi.org/10.1080/01932691.2018.1494605

Casals G., Perramón M., Casals E., Portolés I., Fernández-Varo G., Morales-Ruiz M., Puntes V., Jiménez W. Cerium oxide nanoparticles: a new therapeutic tool in liver diseases. Antioxidants. 2021; 10(5): 660. DOI: https://doi.org/10.3390/antiox10050660

Dhall A, Self W. Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants 2018; 7(8): 97. DOI: https://doi.org/10.3390/antiox7080097

Alizadeh N., Salimi A., Sham T.K., Bazylewski P., Fanchini G. Intrinsic enzyme-like activities of cerium oxide nanocomposite and its application for extracellular H2O2 detection using an electrochemical microfluidic device. ACS Omega 2020; 5(21): 11883-11894. DOI: https://doi.org/10.1021/acsomega.9b03252

Nelson B.C., Johnson M.E., Walker M.L., Riley K.R., Sims CM. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 2016; 5(2):15. DOI: https://doi.org/10.3390/antiox5020015

Minarchick V.C., Stapleton P.A., Fix N.R., Leonard S.S., Sabolsky E.M., Nurkiewicz T.R. Intravenous and gastric cerium dioxide nanoparticle exposure disrupts microvascular smooth muscle signaling. Toxicol Sci. 2015; 144: 77–89. DOI: https://doi.org/10.1093/toxsci/kfu256

20. Minarchick V.C., Stapleton P.A., Sabolsky E.M., Nurkiewicz T.R. Cerium dioxide nanoparticle exposure improves microvascular dysfunction and reduces oxidative stress in spontaneously hypertensive rats. Front Physiol. 2015; 6:339.

Boey A., Leong S.Q., Bhave S., Ho H.K. Cerium oxide nanoparticles alleviate hepatic fibrosis phenotypes in vitro. Int. J Mol Sci. 2021; 22: 11777. DOI: https://doi.org/10.3390/ijms222111777

Minarchick V.C., Stapleton P.A., Sabolsky E.M., Nurkiewicz T.R. Cerium dioxide nanoparticle exposure improves microvascular dysfunction and reduces oxidative stress in spontaneously hypertensive rats. Front Physiol. 2015; 6:339. DOI: https://doi.org/10.3389/fphys.2015.00339

Akhtar M.J., Ahamed M., Alhadlaq H. Anti-inflammatory CeO2 nanoparticles prevented cytotoxicity due to exogenous nitric oxide donors via induction rather than inhibition of superoxide/nitric oxide in huve cells. Molecules 2021; 26(17): 5416.

Arya A., Sethy N.K., Singh S.K., Das M., Bhargava K. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation. Int J Nanomed. 2023; 8: 4507-20.

Hussain S., Garantziotis S. Interplay between apoptotic and autophagy pathways after exposure to cerium dioxide nanoparticles in human monocytes. Autophagy 2013; 9(1): 101–103. DOI: https://doi.org/10.4161/auto.22266

Hussain S., Al-Nsour F., Rice A.B., et al. Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 2012; 6(7): 5820–5829. DOI: https://doi.org/10.1021/nn302235u

Ma J.Y., Mercer R.R., Barger M. et al. Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Applied Pharmacol. 2012; 262(3): 255–264. DOI: https://doi.org/10.1016/j.taap.2012.05.005

Ma J.Y., Zhao H., Mercer RR et al. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicol. 2011; 5(3): 312–325. DOI: https://doi.org/10.3109/17435390.2010.519835

Snow SJ, McGee J, Miller DB et al. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects. Toxicol Sci. 2014; 142(2): 403–417. DOI: https://doi.org/10.1093/toxsci/kfu187

He X., Zhang H., Ma Y., et al. Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnol. 2010; 21(28): 285103. DOI: https://doi.org/10.1088/0957-4484/21/28/285103

Singh K.R., Nayak V., Sarkar T., Singh R.P. Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC Adv. 2020; 10(45): 27194-27214. DOI: https://doi.org/10.1039/D0RA04736H

Ioannou M.E., Pouroutzidou G.K., Chatzimentor I., Tsamesidis I., Florini N., Tsiaoussis I., Lymperaki E., Komninou P., Kontonasaki E. Synthesis and characterization of cerium oxide nanoparticles: effect of cerium precursor to gelatin ratio. Appl Sci. 2023; 13: 2676. DOI: https://doi.org/10.3390/app13042676

Iqbal N., Anastasiou A., Aslam Z., Raif E.M., Do T., Giannoudis P.V., Jha A. Interrelationships between the structural, spectroscopic, and antibacterial properties of nanoscale (< 50 nm) cerium oxides. Sci Rep. 2021; 11(1): 20875. DOI: https://doi.org/10.1038/s41598-021-00222-9

Kowsuki K., Nimala R., Yong-hO R.A., Navamathavan. Recent advances in cerium oxide-based nanocomposites in synthesis, characterization, and energy storage applications: A comprehensive review. Results in Chem. 2023; 5:100877. DOI: https://doi.org/10.1016/j.rechem.2023.100877

Parchovianská I., Parchovianský M., Pecušová B., Hanzel O., Pakseresht A. Synthesis and Characterization of Fluorite-Type La2Ce2O7 Plasma Sprayable Powder for TBCs Application. Mater. 2022; 15: 4007. DOI: https://doi.org/10.3390/ma15114007

Römer I., Briffa S.M., Dasilva A.R.Y, Hapiuk D., Trouillet V., Palmer R.E., et al. Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration. PLoS ONE 2019; 14(6): e0217483. DOI: https://doi.org/10.1371/journal.pone.0217483

Nyoka M., Choonara Y.E., Kumar P., Kondiah P.P.D., Pillay V. Synthesis of cerium oxide nanoparticles using various methods: implications for biomedical applications. Nanomater. 2020; 10(2): E242. DOI: https://doi.org/10.3390/nano10020242

Wang Z.L., Feng X.D. Polyhedral shapes of CeO2 nanoparticles. J Phys Chem B 2003;107: 13563–13566. DOI: https://doi.org/10.1021/jp036815m

Dong C.Y., Zhou Y., Ta N., Shen W. Formation mechanism and size control of ceria nanocubes. Cryst Eng Comm. 2020; 22: 3033-3041. DOI: https://doi.org/10.1039/D0CE00224K

Puppel K., Kapusta A., Kuczyńska B. The etiology of oxidative stress in the various species of animals, a review. J Sci Food Agric. 2015; 95(11): 2179-84.

Storey K.B. Oxidative stress: animal adaptations in nature. Braz J Med Biol Res. 1996; 29(12): 1715-33.

Puppel K., Kapusta A., Kuczyńska B. The etiology of oxidative stress in the various species of animals, a review. J Sci Food Agric. 2015; 95(11): 2179-84. DOI: https://doi.org/10.1002/jsfa.7015

Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006; 160(1): 1-40. DOI: https://doi.org/10.1016/j.cbi.2005.12.009

Pagliari F., Mandoli C., Forte G., Magnani E., Pagliari S., Nardone G., Licoccia S., Minieri M., Di Nardo P., Traversa E. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 2012; 6(5): 3767–3775. DOI: https://doi.org/10.1021/nn2048069

Kumar B., Koul S., Khandrika L., Meacham R.B., Koul H.K. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 2008; 68: 1777–1785. DOI: https://doi.org/10.1158/0008-5472.CAN-07-5259

Raza H., John A., Benedict S. Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells. Eur J Pharm. 2011; 668: 15–24. DOI: https://doi.org/10.1016/j.ejphar.2011.06.016

Carvajal S., Perramón M., Casals G., Oró D., Ribera J., Morales-Ruiz M., Casals E., Casado P., Melgar-Lesmes P., Fernández-Varo G., Cutillas P., Puntes V., Jiménez W. Cerium oxide nanoparticles protect against oxidant injury and interfere with oxidative mediated kinase signaling in human-derived hepatocytes. Int J Mol Sci. 2019; 20(23): 5959. DOI: https://doi.org/10.3390/ijms20235959

Radomska A., Leszczyszyn J., Radomski M.W. The nanopharmacology and nanotoxicology of nanomaterials: new opportunities and challenges. Adv Clinl Exp Med. 2016; 25(1): 151–162. DOI: https://doi.org/10.17219/acem/60879

Wakefield G., Wu X., Gardener M., Park B., Anderson S. Envirox_ fuel-borne catalyst: developing and launching a nano-fuel additive. Technol Analysis and Strategic Manag. 2008; 20(1):127–136. DOI: https://doi.org/10.1080/09537320701726825

Nemmar A., Yuvaraju P., Beegam S., Fahim M.A., Ali B.H. Cerium oxide nanoparticles in lung acutely induce oxidative stress, inflammation, and DNA. Oxid Med Cell Longev 2017; 2017: 9639035. DOI: https://doi.org/10.1155/2017/9639035

Adebayo O.A., Akinloye O., Adaramoye O.A. Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice. Andrologia 2017; 50(3): e12920. DOI: https://doi.org/10.1111/and.12920

Daré R.G., Kolanthai E., Neal C.J., Fu Y., Seal S., Nakamura C.V., Lautenschlager S.O.S. (2023). Cerium oxide nanoparticles conjugated with tannic acid prevent uvb-induced oxidative stress in fibroblasts: evidence of a promising anti-photodamage agent. Antioxidants 12: 190. DOI: https://doi.org/10.3390/antiox12010190

Xu C., Qu X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014; 6: e90. DOI: https://doi.org/10.1038/am.2013.88

Hashem R.M., Rashd LA., Hashem K.S., Soliman H.M. Cerium oxide nanoparticles alleviate oxidative stress and decreases Nrf-2/HO-1 in D-GALN/LPS induced hepatotoxicity. Biomed Pharmacotherapy 73:80–86. DOI: https://doi.org/10.1016/j.biopha.2015.05.006

Ndikuryayo F, Zhong Q, Xiong L, Liu D (2021) Chronic exposure to cerium oxide nanoparticles induce oxidative stress in balb/c mice. J Mater Environ Sci. 2015; 12(7): 955-961.

Sepanjnia A., Ghasemi H., Mohseni R., Ranjbar A., Shabani F., Salimi F., Kheiripour N. Effect of cerium oxide nanoparticles on oxidative stress biomarkers in rats’ kidney, lung, and serum. Iranian Biomed J. 2020; 24(4): 251-256. DOI: https://doi.org/10.29252/ibj.24.4.251

Krafts K.P. Tissue repair: The hidden drama. Organogenesis 2010; 6(4): 225-33. DOI: https://doi.org/10.4161/org.6.4.12555

Ono N., Balani D.H., Kronenberg H.M. Stem and progenitor cells in skeletal development. Curr Top Dev Biol, 2019; 133:1-24. DOI: https://doi.org/10.1016/bs.ctdb.2019.01.006

Ajjarapu S.M., Tiwari A., Kumar S. Applications and utility of three-dimensional in vitro cell culture for therapeutics. Future Pharmacol. 2023; 3: 213–228. DOI: https://doi.org/10.3390/futurepharmacol3010015

Asati A., Santra S., Kaittanis C., Nath S., Perez J.M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed Engl. 2009; 48(12):2308-2312. DOI: https://doi.org/10.1002/anie.200805279

Das M., Patil S., Bhargava N., Kang J.F., Riedel L.M., Seal S., Hickman J.J. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomater. 2007; 28(10):1918-1925. DOI: https://doi.org/10.1016/j.biomaterials.2006.11.036

Karlsson H.L., Cronholm P., Gustafsson J., Möller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008; 21(9):1726-1732. DOI: https://doi.org/10.1021/tx800064j

Wu J., Sun J., Xue Y. In vitro and in vivo antioxidant activities of cerium oxide nanoparticles stabilized with different molecules. J Environ Sci. 2013; 25(4):834-843.

Allu, I., Kumar Sahi, A., Kumari, P., Sakhile, K., Sionkowska, A., Gundu, S. A brief review on cerium oxide (CeO2NPs)-based scaffolds: recent advances in wound healing applications. Micromachines 2023; 14: 865.

Rzigalinski, B.A., Carfagna, C.S., Ehrich, M. Cerium oxide nanoparticles in neuroprotection and considerations for efficacy and safety. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017; 9(4): 10.1002/wnan.1444. DOI: https://doi.org/10.1002/wnan.1444

Younus, H. Therapeutic potentials of superoxide dismutase. Int J Health Sci. 2018; 12(3): 88-93.

Allu I., Kumar Sahi A., Kumari P., Sakhile K., Sionkowska A., Gundu S. A brief review on cerium oxide (CeO2NPs)-based scaffolds: Recent advances in wound healing applications. Micromachines 2023;14(4):865. DOI: https://doi.org/10.3390/mi14040865

Tang J.L.Y., Moonshi S.S., Ta H.T. Nanoceria: an innovative strategy for cancer treatment. Cell Mol Life Sci. 2023; 80: 46. DOI: https://doi.org/10.1007/s00018-023-04694-y

Ernst L.M., Mondragón L., Ramis J., Gustà, M.F., Yudina T., Casals E., Bastús N.G., Fernández-Varo, G., Casals, G., Jiménez, W.; Puntes, V. Exploring the Long-Term Tissue Accumulation and Excretion of 3 nm Cerium Oxide Nanoparticles after Single Dose Administration. Antioxidants 2023;12: 765. DOI: https://doi.org/10.3390/antiox12030765

Cichoż-Lach H., Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 2014; 20(25): 8082-91. DOI: https://doi.org/10.3748/wjg.v20.i25.8082

Akhtar M.J., Ahamed M., Alhadlaq H. Anti-Inflammatory CeO2 nanoparticles prevented cytotoxicity due to exogenous nitric oxide donors via induction rather than inhibition of superoxide/nitric oxide in HUVE cells. Molecules. 26(17): 5416. DOI: https://doi.org/10.3390/molecules26175416

Jiang Y., Kang Y., Liu J. et al. Nanomaterials alleviating redox stress in neurological diseases: mechanisms and applications. J Nanobiotechnol. 2022; 20: 265. DOI: https://doi.org/10.1186/s12951-022-01434-5