GaAs electrical-properties enhancement by neutron transmutation doping
DOI:
https://doi.org/10.57056/ajet.v9i1.162Keywords:
Neutron transmutation, Fluence, SCALE6.1, RRG, GaAsAbstract
This study investigates the potential of neutron transmutation doping (NTD) for enhancing the electrical uniformity of gallium arsenide (GaAs) wafers used in photovoltaic cells. Uniformity is crucial for improving solar cell efficiency, which is a key objective in solar power engineering. We employ the SCALE6.1 code to simulate the impact of NTD on the Radial Resistivity Gradient (RRG) within GaAs wafers for various neutron fluence values. The results demonstrate a clear decrease in RRG with increasing neutron fluence. Notably, acceptable RRG values (below 5%) are achievable for both high (25 Ω.cm) and low (5 Ω.cm) initial resistivity GaAs wafers with moderate neutron fluence levels (7.25x1014 n/cm² and 3.63x1015 n/cm², respectively). This suggests that NTD can effectively improve the electrical properties of GaAs, leading to potentially higher solar cell efficiency.
References
Tanenbaum M, Mills AD. Preparation of uniform resistivity n-type silicon by nuclear transmutation. J. Electrochem. Soc. 1961;108(2):171-176. https://doi.org/10.1149/1.2428036.
Mirianashvili ShM, Nanobashvili DI. Soviet Physics Semiconductors. 1971;4:1612.
Mari B, Navarro FJ, Hernández MA, Riera J. Radiation damage in neutron transmutation doped-InP. NIM B. 1996;120:240-243. https://doi.org/10.1016/S0168-583X(96)00517-4.
Didik VA, Malkovich RSh, Skoryatina EA, Kozlovski VV. Profiles of transmutation isotopes formed in solids by irradiation with charged particles: Formation, analysis and use. NIM B. 2000;160:387-396. https://doi.org/10.1016/S0168-583X(99)00610-2.
Labouret A, Cumunel P, Braun JP, Faraggi B. Cellules solaires: les bases de l'énergie photovoltaïque. 5th ed. ETSF, Dunod; 2010. ISBN: 2100555987.
Raj V, Haggren T, Wong WW, Tan HH, Jagadish C. Topical Review: Pathways toward cost-effective single-junction III-V solar cells. J. Phys. D: Appl. Phys. 2021;55(14):1-41. https://doi.org/10.1088/1361-6463/ac3aa9.
SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design. ORNL/TM-2005/39. Version 6.1, Jun. Available from Radiation Safety Information Computational Center at Oak Ridge National Laboratory as CCC-785; 2011.
Greene PD. Transmutation doping of GaAs by thermal neutrons. Solid State Commun. 1979;32(2):325-326.
Vesaghi MA, Fritzsche H. Neutron transmutation doping of GaAs, cited in: Guldberg J, ed. Neutron-Transmutation-Doped Silicon. Plenum Press, New York; 1981:487-488.
Garrido J, Castano JL, Piqueras J. Deep centers in neutron-transmutation-doped gallium arsenide. Solid-State Electron. 1985;28(10):1039-1043. https://doi.org/10.1016/0038-1101(85)90036-X.
Alexiev D, Butcher KSA. Neutron transmutation doping of gallium arsenide. NIM B. 1993;83:430-436. https://doi.org/10.1016/0168-583X(93)95867-5.
Morvic M, Boháček P, Betko J, Dubecký F, Huran J, Sekáčová M. Electrical properties of semi-insulating GaAs irradiated with neutrons. NIM B. 2002;197:240-246. https://doi.org/10.1016/S0168-583X(02)01360-5.
Young MH, Hunter AT, Baron R, Marsh OJ, Winston HV, Hart RR. Neutron transmutation doping of p-type czochralski-grown gallium arsenide, cited in: Larrabee RD, ed. Neutron Transmutation Doping of Semiconductor Materials. Plenum Press, New York; 1984:1-20. https://doi.org/10.1007/978-1-4613-2695-3.
IAEA report. Neutron Transmutation Doping of Silicon at Research Reactors. IAEA-TECDOC-1681, VIENNA; 2012.
Lévy F. Physique et technologie des semi-conducteurs (Traité des matériaux). Edition Broché vol.18; 1994. ISBN: 978-2-88074-272-0.
Carbonari AW, Pendl Jr W, Sebastião JR, Saxena RN, Dias MS. An irradiation rig for neutron transmutation doping of silicon in the IEA-R1 research reactor. NIM B. 1993;83(1-2):157-162. https://doi.org/10.1016/0168-583X(93)95920-Z.
Kim S-H, Hwang J-H, Choi Y-K, Sim B-C. Method of Manufacturing Single Crystal Ingot, and Single Crystal Ingot and Wafer Manufactured Thereby. International Publication No. WO 2012/134092 A2; 2012. https://patents.google.com/patent/WO2012134092A2/en.
Park B-G, Sun G-M, Kim M-S. Design Concept of Neutron Irradiation Basket for 12-inch NTD in HANARO. Transactions of the Korean Nuclear Society Autumn Meeting, Goyang, Korea, October 24-25, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Naziha Benaskeur, Mohamed Hachouf
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.