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This paper proposed and applied a three-step computational algorithm to solve the time-

fractional Navier-Stokes equation (FNS) in a given cylindrical coordinates for one-way 

unstable flow motion. The Caputo definition of fraction order was obtained using the Riemann 

Liouville fractional integral operator, which was coded with the MAPLE18 software command 

and applied to simulate the different fractional values presented in 2D and 3D surface graphs 

for understanding better the operation of fractional Navier-Stokes equations over time in 

cylindrical coordinates. We considered different test cases to show the proposed algorithm's 

efficiency, robustness, and feasibility, which ultimately reduces the computational time and 

ease of implementation for the simulation of the fractional order of the fractional Navier-

Stokes equation considered. 
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1. Introduction 

Fractional partial differential equations are most used in 

thermodynamics sciences such as reactive diffusion, 

anomalous diffusion, diffusion-related to gas emission in 

transportation system, physics of polymers, electrical 

networks, electrochemical corrosion, chemical sciences, 

seismic waves propagation, porous structures in 

thermodynamics, kinetic processes in applied physics, and 

other similar problems in the study of applied mathematics 

and engineering [1–7]. The study of the Navier-Stokes 

equation (NSE) are consider to be one of fundamental 

models in fluid mechanics which describes the motion of 

Newtonian fluid flows under two significant conditions: 

laminar or turbulent flow phenomenon [8, 9]. In the last 

two decades, the study of time fractional-order Navier-

Stokes equation (FNS) have received great attention in 

studying of fluid mechanics which have proved to be 

significant in modeling many problems and natural 

phenomenon in applied mathematics and engineering 

sciences, such as computer science, inventory science, 

chemical science, biological sciences, and so on. Several 

Authors have proposed and applied numerous methods to 

solve and obtain analytical solutions fractional Navier-

Stokes [FNS] equation such as authors [10] employed 

Adomian decomposition method to solve a time-fractional 

Navier-Stokes equations, [11] applied homotopy analysis 

technique for the numerical solution of time-fractional 

Navier-Stokes equation, [12] Laplace decomposition 

method was used to obtain analytical solution of fractional 



Falade et al / Algerian Journal of Engineering and Technology 08 (2023) 074–083                                                                    75 

 

Navier–Stokes equation, [13] presented numerical 

techniques for the generalized Navier–Stokes equations, 

[14] homotopy perturbation technique was presented to 

solve time-fractional Navier-Stokes equation in a given 

polar coordinates, [15] proposed FRDTM for the numerical 

solution of the multidimensional time-fractional model of 

Navier-Stokes equation, [16] proposed a good analytical 

technique for solving time fractional Navier-stokes 

equation, [17] obtained numerical solutions of  Navier-

Stokes equations with time fractional derivatives using 

analysis approach, [18] studied the fractional model of 

Navier-Stokes equation arising in unsteady flow of a 

viscous fluid, [19] presented numerical solution for the 

time-fractional Navier-Stokes equations by homotopy 

perturbation Elzaki transform, [20] presented a new 

efficient technique for solving fractional coupled Navier-

Stokes equations using q homotopy analysis transform 

method, [21] mild solutions was obtained for the Navier–

Stokes equations with a time-fractional derivative and [22] 

investigated the existence and uniqueness of some 

properties about the solutions obtained such as, regularity 

in Lebesgue spaces and decay rate respectively. 

2. Navier-Stokes Model 

The governing equation for Navier-stokes of the fluid 

dynamics describes the relationship between velocity, 

kinematics viscosity, density, pressure, and time of the 

fluid mechanics. The time-fractional Navier-Stokes 

equation (NSE) of the form: [23]. 

 

                  {
  

   (   )   
 

 
             

         
       

 

                                                                                       
 

Where            are velocity, kinematics viscosity, 

density, pressure, and time respectively, and   is the 

fractional-order derivative. 

In this paper, we consider equation (1) in cylindrical 

coordinates for an unsteady one-dimensional motion of a 

viscous fluid flow which transformed into a cylindrical 

time-fractional Navier-stokes equation of the form:  
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subject to initial condition: 

 

                                                                                 

 

The unsteady flow of a viscous fluid in a given tube where 

velocity field and one space coordinate are the function and 

time as a dependent variable are considered. Some authors 

have worked and obtained numerical solutions of the time-

fractional Navier-Stokes equation such as [24] presented 

and applied transform methods for the analytical solutions 

for the time-fractional Navier-Stokes equation, [25] studied 

and obtained numerical solution for fractional-order 

Navier-Stokes equation of the unsteady viscous flow in 

thermodynamics study, [26] modified Laplace 

decomposition method authors [27] applied Adomian 

decomposition method for the analytical solutions of time-

fractional Navier-Stokes equations. 

The outline of this paper goes thus, first, we briefly 

discussed the basics of the fractional partial differential 

equations and fractional Navier-Stokes equations over a 

given time. Second, we stated the cylindrical coordinates 

for an unsteady one-dimensional motion of a viscous fluid 

flow which transformed the cylindrical time-fractional 

Navier-stoke equation presented. Third, some basic 

concepts of fractional calculus that will be useful in this 

article are identified. Fourth, descriptions and formulation 

of a three-step computational algorithm are presented and 

the application of the proposed algorithm for different 

values . Lastly, we presented the solutions obtained, plots 

profiles, discussion, and conclusion respectively. 

3. Methodology 

3.1 The Riemann-Liouville Integral  

The Riemann-Liouville integral operator of the fractional-

order    of a function                is of the form: 

  
        

 

        
∫   

 

 

                                              

For      and     

3.2 Description of a three-step computational algorithm 

To simulate numerical solutions for equation (3), we 

develop a three-step algorithm using Riemann-Liouville 

integral of fractional-order by the MAPLE 18 software 

coded commands for the computational assessment and 

behavior pattern of fractional-order in cylindrical time-

fractional Navier-stoke equation. The three-step by 

algorithm goes thus:     

 

Restart: 

Step 1  
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Output: See Tables 2, 3, 4, Figures (1(a), 1(b)… 3(a), 

3(f)), and Appendix 

 

4. Computational experiments and results 

In this section, we carried out a computational assessment 

of fractional-order appeared in equation (3) for the 

numerical simulation of the unsteady flow of a viscous 

fluid in a tube when pressure is greater than given velocity. 

We hereby apply three-step algorithm discussed in last 

section and consider the following parameters. 

    

 Table 1. Simulation parameters 

 Test cases (Decrease in Fractional-

order by 100 percent) 

   

   

   

0.2,0.4,0.6,0.8,1.0 

0.02,0.04,0.06,0.08,0.10 

0.002,0.004,0.006,0.008,0.010 

  5.0 

  1.0 

      Where P is the pressure and   is the velocity.  
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Table 2. Numerical simulation results when       

 

          Test case 1    Test case 2    Test case 3    Test case 4    Test case 5 

 

   (0,5) 

0.2 1.00000000 0.4 1.00000000 0.6 1.000000000 0.8 1.00000000 1.0 1.00000000 

0.02 1.00000000 0.04 1.00000000 0.06 1.000000000 0.08 1.00000000 0.10 1.00000000 

0.002 1.00000000 0.004 1.0000000 0.006 1.000000000 0.008 1.00000000 0.01 1.00000000 

 

  (0.2,5) 

0.2 1.74937523 0.4 1.55205114 0.6 1.386104361 0.8 1.25627522 1.0 1.16000000 

0.02 1.93924807 0.04 1.91831392 0.06 1.897244566 0.08 1.87608432 0.10 1.85487489 

0.002 1.95793440 0.004 1.95586654 0.006 1.95379646 0.008 1.95172422 0.01 1.94964986 

 

  (0.4,5) 

0.2 1.74675403 0.4 1.62121617 0.6 1.485853440 0.8 1.35584512 1.0 1.24000000 

0.02 1.83291787 0.04 1.82525579 0.06 1.817045369 0.08 1.80831765 0.10 1.79910316 

0.002 1.83931879 0.004 1.83863150 0.006 1.837938155 0.008 1.83723878 0.01 1.83653342 

 

  (0.6,5)    

0.2 1.62334914 0.4 1.55877195 0.6 1.463737301 0.8 1.35349730 1.0 1.24000000 

0.02 1.64100247 0.04 1.64136555 0.06 1.641106327 0.08 1.64024214 0.10 1.63879061 

0.002 1.64012950 0.004 1.64025245 0.006 1.640368885 0.008 1.64047880 0.01 1.64058222 

 

  (0.8,5) 

0.2 1.40158686 0.4 1.39082091 0.6 1.338930759 0.8 1.25813852 1.0 1.16000000 

0.02 1.36677848 0.04 1.37295510 0.06 1.378536344 0.08 1.38352923 0.10 1.38794132 

0.002 1.36070510 0.004 1.36140413 0.006 1.362097105 0.008 1.36278401 0.01 1.36346486 

 

  (1.0,5)  

0.2 1.08912442 0.4 1.12706049 0.6 1.119174954 0.8 1.07367127 1.0 1.00000000 

0.02 1.01128165 0.04 1.02203695 0.06 1.032264831 0.08 1.04196480 0.10 1.05113700 

0.002 1.00115180 0.004 1.00229836 0.006 1.003439673 0.008 1.00457572 0.01 1.00570652 
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a) for variation of 

                                      
                     

b) for variation of  

                                        
                         

 

c) for variation of                              
                                        
 

 

Fig 1. Depicts 3D surface plots for solutions fractional-order in cylindrical time-fractional Navier-stoke equation 
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Fig 2. Depicts 2D plots solutions for various fractional-order 
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a)  

                                    

                                

b)  

                                     
                                 

c)  

                                     

                                 

  

 

d) 

                                    

                                 

 

e) 

α=1.0 red   =0.10      , =0.010       

      =5                 −1≤ ≤1 

 

Fig 3. Depicts 2D plots solutions for various fractional-order 
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5. Discussion of the Results 

The variation of fractional-order   for different values of 

parameters on time-fractional Navier-Stokes equation (3) 

are considered for computational simulations when the 

pressure and velocity are 5 and 1 respectively (see Table 

1). We, therefore make the following findings: 

1. Tables 2 and 3 show the simulation results 

obtained at different fractional-order   and 

observed that increases in the fractional-order   

lead to a decrease in the numerical solutions 

obtained. 

2. Fig.1 (a), Fig.1 (b), and Fig.1(c) depicts 3Dplots 

surface for the simulated results for time-

fractional Navier-Stoke equation (1) when 

fractional-order   decreased by 100 percent 

respectively. 

3. Fig.2 (a), Fig.2 (b), and Fig.2 (c) depicts 2Dplots 

for the simulated results for time-fractional 

Navier-Stoke equation (3) when fractional-order   

decreased by 100 percent respectively. 

4. Fig.3 (a) depicts the decrease in simulation results 

from fractional-order        to         and 

the highest results are recorded in red      .  

5. Fig.3 (b) depicts the decrease in simulation results 

from fractional-order         to         and 

the highest results are recorded in red       .  
6. Fig.3 (c) depicts the decrease in simulation results 

from fractional-order        to          and 

the highest results are recorded in red      . 

7. Fig.3 (d) depicts the decrease in simulation results 

from fractional-order       to          and 

the highest results are recorded in red      .  

8. Fig.3 (e) depicts the decrease in simulation results 

from fractional-order       to        and the 

highest results are recorded in red     .  

Generally, the simulation results in this framework 

demonstrated the relationship between pressure and 

velocity when      on the unsteady flow of a viscous 

fluid in a tube which was described by the time-fractional 

Navier-Stoke equation 

 

6. Conclusion 

 

In this paper, we proposed a three-step computational 

algorithm for the numerical solutions of the time-fractional 

Navier-Stoke equation cylindrical coordinates when 

pressure required is greater the velocity and the proposed 

algorithm demonstrated a good computation technique and 

reliable approach of solving different fractional-order 

partial differential models arising in fluid dynamics and 

chemical engineering. From numerical solutions obtained, 

it is seen that the rate of converges is fast and a good 

agreement with analytical solutions. Hence, we conclude 

that the present algorithm is powerful with high reduction 

in computational lengths and straightforward to obtain 

analytical-numerical solutions in many areas of time-

fractional problems in fluid mechanics.  

 

Appendix 

Step 1: 
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Step 3: 
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