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This work deals with the problem of speed control of a sensorless asynchronous motor. 

Conventional control laws by PI or PID for example, although still widely used, may prove to 

be insufficient or unsuitable. We then develop control laws by state feedback, their use 

nevertheless requires the measurement of the state vector. However, in many cases, sensors for 

measuring all the physical quantities are not available, essentially for cost reasons. An 

observer, which is a mathematical object, makes it possible to reconstruct this state vector 

from the only physical measurements available. In this context, we will propose the use of the 

sliding mode technique, which is a recursive control method and represents a tool for the study 

of dynamic stability. We will then approach the observers and in particular those resulting 

from the theory of the reference model (MRAS). In this proposed work, we are interested in 

the study of the asynchronous motor by the application of the sliding mode which is a 

relatively recent technique for nonlinear systems. It is combined with the vector control 

principle with oriented rotor flux to design robust machine control laws. The motor state 

quantities are estimated by the MRAS algorithm. A comparison of the performances is 

established to come out with general conclusions and in particular with regard to the use of the 

observer to estimate the quantities of state of the engine to control it later by this technique.  
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1. Introduction  

In recent years, the development of power electronics and 

technological developments have widened the field of 

application of alternating current machines. Indeed, the 

asynchronous motor (MAS) known for its robustness, cost 

and reliability, is the subject of several researches. 

However, it is traditionally used in industrial applications 

which do not require high performance, this is due to its 

strong non-linearity and the coupling between the stator 

quantities and the rotor quantities. 

On the other hand, the DC motor with separate excitation 

has a natural decoupling between the flux and the torque. 

These two quantities can be controlled independently by 

the field current and the induced current. It is for this 

reason and thanks to its simplicity of control that it is 

widely used in the field of variable speed applications. 

Nowadays and given the interest in these actuators, 

synthesized control techniques are more and more complex 

because they must meet increasingly stringent 

requirements. 

 

Indeed, any control developed must, on the one hand, aim 

to simplify the mathematical model of the asynchronous 

motor while ensuring the decoupling between these two 

main dynamics (speed and flux), and on the other hand, a 

certain robustness with respect to the variation of the 

parameters, the uncertainty linked to the measurements 

and/or estimates (observations) of the state variables. 
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It was only at the beginning of the seventies that this 

ambition which consists in facilitating the control of the 

asynchronous motor became achievable, and this with the 

proposal of the vector control introduced by 

"BLASCHKE", based on a change of coordinates which 

makes it possible to reduce the complexity of the dynamic 

model of the motor and to ensure decoupling in steady state 

of the two main quantities (torque, flux). In the case where 

the flux is kept constant, the motor thus acquires a behavior 

similar to that of the DC machine, the decoupling 

properties of which are achieved naturally by means of the 

brush-collector assembly. 

 

Conventional control laws, by PI or PID for example, 

although still widely used, may prove to be insufficient or 

unsuitable. Control laws are then developed by state 

feedback, their use nevertheless requires the measurement 

of the state vector. However, in many cases, sensors for 

measuring all the physical quantities are not available, 

essentially for cost reasons. An observer, which is a 

mathematical tool, makes it possible to reconstitute this 

state vector from the only physical measurements available. 

In this context, we will propose the use of the sliding mode 

technique, which is a recursive control method and 

represents a tool for the study of dynamic stability. We will 

then discuss the observers and in particular those from the 

MRAS theory. 

 

In this work, we are interested in the study of the control of 

the asynchronous motor by the application of the sliding 

mode which is a relatively recent technique for the 

nonlinear systems [1]. It is combined with the principle of 

oriented rotor flux vector control to design the machine 

control laws. The state quantities of the MAS necessary for 

its control are supposed to be measured by sensors in the 

first place, then, estimated by an observer of the MRAS 

type. A performance comparison is established to come out 

with general conclusions and in particular with regard to 

the use of the MRAS technique to estimate the state 

quantities of the machine to control it. 

  

2. Asynchronous motor model   

The process to be controlled consists of a squirrel-cage 

asynchronous motor voltage-controlled by a two-level 

inverter driven by a sine-delta PWM. 

We consider for the motor, a sinusoidal distribution of the 

magnetomotive forces, the linearity of the magnetic circuit, 

the absence of magnetic and mechanical losses, as well as 

the effects of notches and skin. 

We then express its dynamic model in the Park frame by a 

system of differential equations [2]:  
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3. Sliding mode control strategy 

3.1 Architecture of the proposed speed control 

strategy 

In this part, we propose to eliminate the conventional PI 

regulators in the diagram of the vector control of the 

machine given by figure 1 and to replace them by control 

laws by Sliding Mode. 
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Fig 1. Illustrates all possible transitions of valleys: L-Γ, 

 

 

The relative degree of the two surfaces is taken equal to 

two in order to show 

commands  and  in its derivatives. The two 

surfaces are given by : 
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Where and are the reference velocity and the reference 

flux, with :                  

>0 et >0. 

To determine the control laws which bring the sliding 

surfaces, equation (6), towards zero in a finite time, we 

consider the dynamics of , given by: 
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• During the sliding mode, the derivatives are null, that is 

to say: 
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from which we derive the following equivalent commands: 
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• During convergence mode, we have: 

 

 

If Lyapunov's stability theory is used to ensure the 

attractiveness and invariance of SC, the following 

condition must be satisfied: 
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The general structure of the Sliding Mode control of the 

MAS with oriented rotor flux, is presented in figure 2. The 

blocks calculating (   )    and (   )
   

 representing the 

fictitious controls, respectively provide the reference 

currents obtained from the flux errors rotor and speed. The 

calculation of the control voltages      and     is based 

on the error between the reference and real currents [1]. 
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Fig 2. General structure of the sliding mode control of the asynchronous machine 

 

  

4. Sensorless control based on the MRAS observer 

 

2.1 MRAS Speed Observer Architecture 

The MRAS technique (Adaptive Reference Model 

System) is developed to minimize the error between a 

real quantity and an estimated quantity. It is based on the 

comparison of the outputs of two structures: 

• The first, which does not introduce the quantity to be 

estimated, is called the reference model. 

• The second structure is the adjustable model depending 

on the estimated quantity. 

The error between the two models drives an adaptation 

mechanism (algorithm) that generates the estimated 

speed, which is used in the adjustable model. 

      For MAS, whose first study of the MRAS technique 

goes back to Schauder (1992), the two basic models are 

the stator model (voltage model) and the rotor model 

(current model), figure 3, [1 ], [3], [4]. 

 
 

Fig. 3. Structure of an MRAS observer for rotor speed 

estimation [5]. 

From the stator and rotor equations, we have [6], [7], [8]: 

The reference model equations given by: 
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The adaptation algorithm is chosen to converge the 

adjustable model towards the reference model, thus 

minimizing the error and ensuring model stability. The 

algorithm parameters are defined according to the criterion 

of Popov's hyperstability [1]. 

The error between the states of the two models can be 

represented in matrix form as follows: 
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The purpose of this device is to generate the value of the 

supposed speed, to be reintroduced into the adjustable 

model in order to cancel the error between the two flow 

estimation models. It must therefore converge this error 

asymptotically to zero, providing a fast response and 

guaranteeing the stability of the system. Schauder studies 

the stability of this algorithm by applying the so-called 

hyperstability criterion [5]. 

Finally, the estimated speed can be expressed by a law of 

the proportional and integral type given by the following 

relationship: 

           
 dtkk ee rirpr̂                         (12) 
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Fig 4. Performance of sliding mode control without speed sensor – Test with nominal parameters. 
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In order to test the performance and robustness of the 

Backstepping control without speed sensor, a series of 

numerical simulations is carried out to validate the 

performance of the proposed control technique: 

    No-load starting with application of a speed reference of 

150 rad/s, application and elimination of a load torque of 

10 N.m at times t= 0.25s and t=0.7s respectively and a 

torque of 5 N.m at times t = 2.35s and t= 2.8s respectively. 

    Figure 4 represents the simulation results of the sliding 

mode control without speed sensor based on the MRAS 

technique, the study of the results clearly shows that this 

type of control gives very satisfactory performance, the 

speed observed follows the evolution of the real speed with 

practically zero overshoot, the decoupling is maintained as 

well as the current is admissible with a minimal 

observation error.

Resistive torque (N.m) Speed reference (Wb) 

 

time (s) time (s) 

 

Fig. 5. Speed setpoint profile and mechanical load 
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Stator current (A) Quadrature current (A) 

 
time (s) time (s) 

Fig 6. Performance de la commande par mode glissant sans capteur de vitesse – Essai avec variation de 50%Rr 
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Stator current (A)                       Quadrature current (Wb) 

 
time (s) time (s) 

Fig 7. Performance of sliding mode control without speed sensor – Test with variation of 20%Ls 
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Fig 8. Chase test with different speed ranges 
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Fig 9. Performance of sliding mode control without speed sensor – Test with variation of 20%Lr 
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not robust in front of the parametric variations of the 

machine. Indeed, sensorless control methods based on the 

MRAS technique. Generally suffer from a limited 

convergence domain and a relatively high sensitivity to 

uncertainties and/or disturbances, but also robustness in the 

presence of a nonlinear system parameter change during 

start-up and at low speed . To solve this problem, it is 

therefore necessary to turn to the so-called model-free 

methods. 

Appendix 

Table I. Motor Parameters 

Powerful 1.5 kW 

Tension 220/380 V 

Current (∆/Y) 6.4/3.7 A 

Speed 1420 rpm 

Nominal torque 10 Nm 

Frequency 50bHz 

Rs 4.85 Ω 

Rr 3.805 Ω 

Ls  0.274H 

Lr  0.274H 

Lm  0.258H 

D  0.031 Kg.m² 

fr 0.00114 N.m.s/rad 

P 2 
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