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ABSTRACT 

The utilization of nanosatellites in space missions has sparked significant interest owing to their compact size and relatively 

economical development, launch, and operational expenses in comparison to larger satellites. This cost-effectiveness 

facilitates more frequent launches and the capability to replace or upgrade satellites with greater frequency. The stability of 

nanosatellites is paramount for their successful operation in space, necessitating designers and engineers to implement 

various measures to ensure the satellite maintains its orientation and position throughout its mission. In this paper, an 

adaptive control methodology relies on backstepping control theory is suggested to address the multiplicative faults in the 

actuators. Specifically, the control system's efficacy is demonstrated through numerical simulations for 3-axis stabilization. 

The outcomes reveal that the proposed control approach adeptly sustains the stability of the nanosatellites in the event of 

actuator failure, outperforming classical backstepping control. 

Keywords: backstepping control; attitude control; nanosatellite; multiplicative fault observer; adaptive algorithm. 
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1. Introduction  

In numerous satellite missions presently operational, spanning applications such as scientific research, Earth 

observation, and navigation, attitude control plays a pivotal role. It involves actively overseeing and fine-tuning the 

satellite's orientation to fulfill specific goals. These objectives encompass precise alignment of the satellite's payload with 

Earth-based targets, ensuring stability to prevent undesirable tumbling motions, optimizing solar panel power generation, 

and facilitating efficient communication with ground stations. Within the domain of nanosatellites, utilized for diverse 

research and military missions, specific requirements and constraints guide distinct considerations in managing attitude [1], 

[2], [3]. 

To alter the satellite's orientation, a combination of active and passive actuators can be employed. Passive actuators 

typically involve rigid ferro-magnetic masses that leverage the Earth's gravitational field. While this method offers only an 

approximate orientation of the satellite [4], [5], it lacks  

precision. Conversely, various active actuators, such as magnetorquers, reaction wheels, thrusters, and gyroscopic 

wheels, offer more accurate control over the satellite's orientation. 

Actuator-based attitude maneuvering is crucial for satellites to attain the desired orientation, necessitating robust 

stabilization and precise pointing accuracy. However, the occurrence of faults or failures in the actuator can significantly 

degrade performance and even lead to attitude instability. 

To this end, it is imperative to incorporate fault tolerance into the design of attitude tracking control to ensure the 

satellite's stability with utmost reliability, as highlighted in existing literature [6], [7], [8]. To achieve this goal, a multitude 

of control strategies has been recently employed to address the challenges posed by actuator faults in the context of satellite 

systems [9], [10], [11]. The application of adaptive control has been suggested as an effective approach to tackle the 

complexities and uncertainties inherent in system dynamics.  

Backstepping is a regression design technique that finds an extensive application in the design of satellite attitude 

control, requiring a well-suited design for external disturbances. Various control strategies have been integrated into 

backstepping control to enhance attitude control performance, including: adaptive sliding mode control [12], magnetic 

attitude control [13], attitude containment control [14], Disturbance-observer [15], neural network [16]. These proposed 

approaches play a pivotal role in ensuring an effective spacecraft attitude tracking under diverse uncertainties. 

 This study introduces an adaptive backstepping attitude controller applied to a nanosatellite, aiming to mitigate issues 

arising from multiplicative faults in the actuator that could potentially impede control performance. The proposed 

approach incorporates a disturbance observer with an adaptive algorithm to estimate uncertainties. Implementation of 

this strategy enhances tracking control and improves pointing accuracy. 

 The effectiveness of the method in achieving attitude stabilization control for a nanosatellite with uncertain actuator 

faults is demonstrated through Lyapunov analysis, validating the stability of the closed-loop system under 

disturbances. Simulation results further support the efficacy of this approach.           

2. Mathematical model 

 

The main equation of the satellite attitude dynamics relates the angular momentum with the external torque. This 

equation, referred to as Euler’s equation of motion, is expressed as: 

( )I I h d u                                                                                                   (1) 

where , ,  I h and   are respectively the moment of inertia of spacecraft the angular velocity vector, the angular 

momentum of the wheels, and external disturbance torque vector, and   control torque. 

The kinematic quaternion of modified Rodrigues parameters is expressed as [17], [18] 

0( )s G s                                                                                                              (2) 

Where 
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1 2 3[ , , ]Ts s s s  is the attitude vector in terms of Rodrigues parameters, 0 0 0 0[ , , ]Tx y z    body angular velocity 

vector referenced to orbital coordinates,  

Where 

0 0( )b
rR s w    

And

2 2 2
1 2 3 1 2 3 1 3 2

2 2 2
1 2 3 1 2 3 2 3 1

2 2 2
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and G is kinematic matrix, it is defined as follow: 

3 3 3 3

1 1
( ) ( [ ] )

2 2

T
Ts s

G s I I s ss
 


                                                                 (3) 

Where s is an operator formulated as follow [19] 

3 2

3 1

2 1

0

0

0

s s

s s s

s s



 
 

 
 
  

                                                                                           (4)                                

Finally, by combining the equations of dynamics (1) and kinematic (2) the global system of equations that governs the 

motion if the satellite around its center of mass is expressed in the following representation:   

 
0

1

( )

( )

G ss

I I h d h



   

  
  

       

                                                                        (5) 

3. Backstepping control design 

 

In this part, a backstepping control law is presented. This approach is derived from [20]. 

The backstepping algorithm is depicted in two basic steps as shown below: 

 Step 1:  

The first and the second variable of the backstepping can be designed as; 

1 1 refz x s s                                                                                                        (6) 

2 2 1z x                                                                                                               (7) 

Where 

2x  ; and 1 is a virtual control law.  

1 1 2 1 1 1z g x g f                                                                                                  (8) 

Hence 

1 1 0( ) ( ) ( ) ( )b
rz G s G s G s R s w                                                                          (9) 

In order to prove the stability, we define the first Lyapunov candidate function as: 

         1 1 1

1

2

TV z z                                                                                                    (10) 
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Computing the derivative of 1V  gives: 

1 1 1

1 2 1 1 0   ( ) ( ( ) ( ) ( ) )

T

T T b
r

V z z

z G s z z G s G s R s w



  
                                                       (11) 

To make 1V  negative 1  is assumed to be: 

 1
1 1 1 1G c z f                                                                                                 (12) 

Where 3 3
1 0c R   . And  

1 0( )b
rf GR s w                                                                                                        (13) 

 substituting (12) in (11) gives 

1 1 1 1 1 2( )T TV z c z z G s z                                                                                          (14) 

The term  1 2( )Tz G s z will be discarded in the subsequent step.  

 Step 2:  

The Second Lyapunov candidate function is chosen as follow  

 2 1 2 2

1

2

TV V z z                                                                                                 (15) 

Then the derivative of (13) can be written as: 

2 1 2 2

1 1 1 1 2 2 2    ( )

T

T T T

V V z z

z c z z G s z z z

 

   
                                                                          (16) 

According to (7)  

2 1z                                                                                                            (17) 

Then, substituting (17) and (1) in (16) gives: 

1 1
2 1 1 1 1 2 2

1 1
1

( ) ( ( )

       ( ) )

T TV z c z z G s z z I I I u

I h I d
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                                           (18) 

To make 
2V negative, the control law u is assumed to be: 

2 2 1 2 1( )u I c z Gz f a                                                                                      (19) 

Where  

1
2 ( ( ))f I d I h                                                                                           (20) 

Hence  

2 1 1 1 2 2 2
T TV z c z z c z                                                                                           (21) 

4. Adaptive Backstepping Control design under Actuator Fault 

This approach id adopted to design a controller that is able to composite the actuator fault. The concept of this controller 

is designed as follow. 

Considering the presence of actuator faults, the model dynamic equation is consequently rewritten as follow: 

 

( ) ( )mI I h d f u                                                                                          (22) 
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Where, 

mf is the additive fault. 

The estimated fault errors can be defined as: 

ˆ
m m mf f f                                                                                                          (23) 

Where, 

ˆ
mf is the estimated additive fault. 

With the same strategies of section III, we define the first and the second variable of backstepping. Furthermore, since 

the first subsystem of the mathematical model is defect independent, the first state design of the adaptive backstepping 

approach is identical as the traditional backstepping and the derivative of the first Lyapunov function remains unchanged.   

However, the second Lyapunov function is chosen as: 

1
2 1 2 2

1 1

2 2

T T
m mV V z z f f                                                                                (24) 

Where 

 is a positive design parameter. 

Then, the time derivative of (24) can be written as: 

1
2 1 2 2

ˆT T
m mV V z z f f                                                                                       (25) 
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Then 
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In order to have a negative derivative, the control law u can be chosen as follow:  

1
2 2 1 2 1

ˆ ( )mu f I c z Gz f a                                                                                 (28) 

The estimated defect update law is given as follow: 

1
2

ˆ T
mf z I u                                                                                                         (29) 

   Therefore, the adaptive control law based on backstepping approach is a stable tracking control law on the condition that 

V > 0 and  ̇ <0 under the observation of multiplicative actuator faults, afterwards the stability has been demonstrated. 

5. Numerical simulations 

A numerical simulation was performed using MATLAB and Simulink, to investigate the effectiveness of the selected 

controller. The following parameters were used to evaluate the results. The inertia matrix is 

1.2 0 0

0 1.2 0 ( . 2)

0 0 1.2

I kg m

 
 


 
  

, 

The controller gains have been chosen as,       and       , and the desired attitude is [-6, -4, -2] deg.  

We introduce at the time t=300 sec an additive fault           
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Fig 1. Time responses of Attitude Error-No adaptive backstepping 

   

Fig 2. Time responses of Desired and estimated attitude -No adaptive backstepping 
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Fig 3. Time responses of Attitude Error-Adaptive backstepping 

 
Fig 4. Time responses of Desired and estimated attitude - Adaptive backstepping 
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The subsequent analysis provides a more in-depth examination of error results spanning a duration of 350-450 seconds. 

In this evaluation, the additive fault was considered utilizing the root mean square (RMS) method.Haut du formulaire 

 

Table 1. RMS errors of the attitude  

 Root Mean Square Error 

 Backstepping  
Backstepping 

Adaptive 

Roll (deg) 

Pitch (deg) 

Yaw (deg) 

0.104e-1 

0.081e-1 

0.090e-1 

0.472e-5 

0.118e-5 

0.424e-5 

 
Magnitude of 

error 

Magnitude of 

error 

Attitude (deg) 0.160e-1 0.646e-5 

6. Stochastic Simulations 

The static simulation involves approximately 5000 runs, with the primary aim of examining the accuracy and 

performance of the employed method during attitude control of a rigid nanosatellite. In each Monte Carlo iteration, control 

errors for angle rates along the three axes are randomly selected within the range of [-0.5, 0.5] with a precision of 0.05°/s. 

The overall magnitude error is consistently maintained below 0.012 degrees. Across all simulations, the Monte Carlo tests 

demonstrate the robustness of the adaptive controller against actuator uncertainties, highlighting its effectiveness. 

  

  
Fig 4. Monte-Carlo simulations test. 
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7. Conclusion 

This paper presents an exhaustive formulation for nanosatellite attitude stabilization suffering from actuator faults. The 

proposed control methodology relies on an adaptive backstepping controller, with the explicit objective of alleviating the 

adverse effects of actuator failures on system performance. A Fault estimation observer is incorporated in the proposed 

adaptive controller to counteract multiplicative actuator faults. A rigorous proof of stability of the closed-loop system is 

validated through Lyapunov's analysis.in addition, a number of Monte Carlo simulation tests were conducted to assess the 

performance of the developed adaptive backstepping controller. Finally, the simulation results validate the theoretical 

claims, demonstrating the effectiveness of the proposed control law across diverse situations, leading to high-precision and 

consistent attitude control. 
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