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Modeling nuclear reactor cores stands as an essential initial step in nuclear technology 

research and development. The reactor core, serving as the primary thermal energy source in 

nuclear power plants (NPPs), plays a pivotal role. Such reactor core modeling serves various 

objectives, including core power control and load-following operations within NPPs. In this 

study, the pressurized water reactor (PWR) core was modeled using the point reactor method, 

a technique widely applied in conjunction with multiple reactor core power control strategies 

during load-following operations. Employing a proportional-integral-derivative (PID) 

controller, load-following scenarios tailored to grid load maneuvers were implemented in the 

developed reactor core model. The study also delved into the effects of temperature feedback 

and xenon. The analysis of simulation results revealed only a very small deviation in power 

between the desired and actual reactor core power. A substantial movement of the control rods 

effectively countered the notable impact of xenon on reactor power. Regarding temperature 

feedback, its contribution to the core total réactivity with a negative reactivity was confirmed. 

This study utilized the Python language for both the development of the nuclear reactor model 

and the creation of algorithms required for power control during load-following mode. 

Typically, similar endeavors with distinct objectives are conducted using MATLAB 

SIMULINK. 
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1. Introduction  

    A nuclear reactor is a complex, nonlinear, and time-

varying system [1]. Consequently, controlling the power 

within the reactor core proves to be a challenging task. 

Ensuring the safe operation of nuclear reactors requires 

precise control of core reactor parameters, including 

thermal power, coolant and fuel temperature, as well as 

power axial offset—making it a formidable endeavor in 

nuclear reactors. The load-following mode for nuclear 

reactors is mainly performed to control the core power and 

the axial offset simultaneously [2, 3]. Consequently, over 

the decades, continuous work has been devoted to the 

research including modeling nuclear reactor cores, 

stability, and load-following control for reactor cores. Up 

to now, there exists a set of nuclear reactor core modeling 

approaches for different purposes.  In the point nuclear 

reactor core modeling method, the core is regarded as a 

point without any space profile, the parameters core only 

varies with time [4, 5].  This method was widely applied to 

the power control of NPPs using several advanced methods 

and to analyze the stability of the PWR core related to 

power transients caused by xenon transients during reactor 

operation in load-following mode [2]. Using this modeling 

method, the applicability of the second-order sliding-mode 

control scheme in a nuclear reactor power control and 

regulation is demonstrated [6].  For the dynamic simulation 

of the operation of the high-temperature next-generation 

nuclear reactor, this modeling method is also developed 

and applied successfully [7].  An application of the point 
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kinetics equation with temperature feedback in a nuclear 

reactor is described and investigated using MATLAB-

Simulink Toolbox [8, 9, and 10]. In the present work, 

modeling of the pressurized water reactor (PWR) core was 

performed using the point reactor method. By using a 

proportional-integral-derivative (PID) controller, a scenario 

of load-following operation, according to load maneuvers 

on electrical grids, was implemented in the developed 

reactor core model. The temperature feedback and xenon 

effect were investigated.     

2. Nuclear Reactor Model 

 This study focuses on the development of a model for 

the nuclear reactor core, utilizing point kinetics equations. 

The model incorporates one delayed neutron group of 

precursors and accounts for feedback from fuel and coolant 

temperatures [11, 12, 13, 14, and 15]. The influence of the 

poison (xenon) is also integrated into the reactor model [1, 

6, 16]. Regarding the xenon effect, it's important to note 

that among the fission products present in the reactor core, 

xenon-135 and samarium-149 (both considered poisons) 

possess notably large absorption cross sections, resulting in 

a significant impact on the total reactor core reactivity. 

As a result, the developed mathematical model 

representing the PWR core is organized into four distinct 

sub-models: the neutronic model, the thermal-hydraulics 

model, the xenon model, and the external reactivity control 

model (involving the withdrawal or insertion of control 

rods). To explicitly outline the function fulfilled by each of 

these sub-models, the differential equations representing 

their parameter variations are individually listed below: 

 

2.1. Relative power kinetic sub-model equations  

The summary of the point kinetics equations, 

incorporating six groups of delayed neutrons, is provided 

below:
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The application of one delayed neutron group instead of 

six groups does not compromise the integrity of the core 

reactor model [6]. By introducing the concept of relative 

power, the kinetic sub-model can be expressed through the 

following equations: 
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2.2. Fuel and coolant sub-model equations   
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2.3. Xenon and iodine sub-model equations  
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2.4. Total Reactivity sub-model equation  
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Table 1 provides the nomenclature for the parameters and 

constants found in the differential equations (1-11). 

 

Table 1: Nomenclature 

Symbol              Definition 

n 

c 

nr 

cr 

ρ 

β 

Λ 

λ 

Tf 

µf 

ff 

P0 

Ω 

 

Tc 

µc 

M 

 

Reactor neutron density [n/cm3]: 

Reactor precursor density [atom/cm3]: 

Relative reactor neutron density: 

Relative reactor precursor density: 

Total reactivity in reactor core [pcm]: 

Total delayed neutron fraction; 

Effective prompt neutron lifetime[s];  

Radioactive decay constant [s-1]; 

Average reactor fuel temperature [°C]; 

Total heat capacity of the fuel [MW. s/°C]; 

Fraction of reactor power deposited in the fuel;  

Initial equilibrium power [MW]; 

Heat transfer coefficient between fuel and coolant 

[MW. s/°C]; 

Average reactor coolant temperature [°C]; 

Total heat capacity of coolant [MW. s/°C]; 

Mass flow rate multiply by the heat capacity of the 

coolant [MW. s/°C]; 
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Tl 

 

Te 

 

γX   

γI 

λX 

λI 

αf 

 

αc 

Tf0 

Tc0 

σx 

 

δρr 

Zr 

Gr 

υ 

The temperature of the water leaving the reactor 

core [°C]; 

The temperature of the water entering the reactor 

core [°C]; 

Xenon yield by fission 

Iodine yield by fission 

Xenon decay constant [s-1] 

Iodine decay constant [s-1] 

Coolant temperature reactivity coefficient 

[Δk/k/°C] 

Fuel temperature reactivity coefficient [Δk/k/°C] 

Initial equilibrium fuel temperature [°C] 

Initial equilibrium coolant temperature [°C] 

Microscopic absorption cross-section of xenon 

[cm2] 

Reactivity due to control rod [Δk/k] 

Control rod speed [cm/s] or [%/s] 

Total reactivity worth of control rod [pcm]  

Average number of neutrons production per fission 

 

The developed model, represented by equations (1-9), is 

linearized around equilibrium point (n0, c0). Using the 

small perturbation assumptions [1], the resulting linearized 

model takes the following form:: 
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Where    nx t R  is the state vector of the model, 

A n nR  is state matrix,   mu t R  is the control input 

vector of the model, y is the output vector of the model, 

1C nR   is the input matrix. These vectors are given as 

follows, as for the matrices, see reference [1] for more 

details:  

T
, , , , , ,fx n c T T X Ir r c           

 y nr ,  u Zr  

In creating the nuclear reactor model, the functions for the 

Python algorithms, namely Math_Reactor_Model, 

Reactor_Pow_Reg, Test_Reactor_Model, and 

Integral_Rod_worth_calculation, are formulated using the 

differential equations (1-11). To assess the reactor model 

under load-following conditions, a representative power 

reactor example is selected [1]. The reactor parameter 

values utilized in this study are detailed in Table 2. 

3. Reactor Power Control Strategy 

The power control in a Pressurized Water Reactor 

(PWR) primarily relies on two control measures: adjusting 

control rods and altering the concentration of boric acid in 

the coolant. In this study, only the first control measure is 

employed for reactor power control. The nuclear reactor 

core modeling established here overlooks the dynamic 

iodine-xenon process. Consequently, the power control 

system analysis is conducted over relatively short 

timeframes, typically spanning hundreds or thousands of 

seconds. However, when considering the dynamic iodine-

xenon process in reactor core modeling, power control 

proves suitable for dynamic process analyses spanning 

longer durations, such as several hours or days. This latter 

modeling case is the focus of examination in this work. 

Furthermore, various control strategies are devised 

based on a controller employing one of several reactor core 

power control methods: PID control, feedback control with 

a state observer, optimal control, neural network control, 

fuzzy control, model predictive control, H robust control, 

sliding mode control, and fractional order control [17, 18, 

19, and 20]. Among these methods, it is widely recognized 

that the PID controller stands out as the simplest to design 

and implement in industrial applications as real-time 

controllers [1, 21, 22, and 23]. Additionally, the PID 

controller exhibits reduced overshoot and settling time 

when compared to a PI controller.  

The reactor control strategy diagram included PID 

controller is schown in Fig.1.   

The standard form of a PID controller, described in the 

time domain, can be articulated by the following equation:

     
 


0

13
t
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de t
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Where , ,K K K RP I D   the proportional, integral, and 

derivative gains, respectively; e(t): error signal; u(t) is the 

model input signal (control action); Pset(t) is the desired 

power to be established in the reactor. y(t) is the model 

output signal, Pout  is the controlled power of the reactor. 

The derivative action time constant  0   is assumed to 

be fixed.  

 

Table 2: Reactor parameter values, in 100% of nominal 

power 
Parameter                         Value                  

Thermal power 

Core heights 

Core radius 

Diffusion constant (D) 

Mean velocity of neutrons (v)  

Microscopic absorption cross-

section (σx) 

Fractional fission yield of Xenon 

(γx) 

Fractional fission yield of Iodine 

(γI) 

Xenon decay constant (λx) 

2500MW                                                                          

400cm 

200cm 

0.16cm 

2200m/s 

 

3x10
-18

 cm2 

 

0.003 

 

0.059 
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Iodine decay constant (λI) 

Macroscopic fission cross-section 

(Σf) 

Total delayed neutron fraction (β) 

Total reactivity worth of rod 

Total heat capacity of the fuel (μf) 

Total heat capacity of the coolant 

(μc) 

Effective prompt neutron lifetime 

(Λ) 

Fraction of reactor power 

deposited in the fuel (ff) 

2.1x10-5s-1 

2.9x10-5s-1 

0.3358cm
-1 

0.0065 

0.145pcm 

26.3MW.s/°C 

71.8MW.s/°C 

 

2x10-5s 

 

0.92 

 

  

   

 

 
Fig 1. Reactor core power control strategy with PID 

controller. 

 

3.1. Control rod and worth calculation algorithm 

In this study, the control strategy for adjusting reactor 

power is exclusively based on the external manipulation of 

control rods. To accommodate this approach, an algorithm 

is devised to calculate the reactivity worth of control rods, 

considering their prescribed step movement limit [24, 25, 

and 26]. Equation (10), representing the deviation in 

external reactivity, serves as the foundation for this Python 

algorithm. In addition to determining the total worth 

reactivity of the control rods (denoted as Gr in the same 

equation), it is crucial to select the speed at which they are 

moved. For example, a fixed speed of 2 cm/s and a 

displacement height of 386 cm are chosen, values specified 

in the characteristic table of the VVER-1200 reactor 

control rod mechanism. Typically, the relationship between 

reactivity and rod position can be empirically determined. 

However, for PWR reactors, an approximate polynomial 

function, obtained through mathematical software, is 

suggested for calculating the integral efficiency of any 

control rod, assuming a constant reactivity coefficient. The 

proposed polynomial expression is provided below:


0.00175 0.3675 19.454 3 2

( )  14
4 3 2

y h h h h
scaling

   
 
 
 

 

Where: h  is the control rod position [%] inserted in core 

reactor;  scaling  is the reactivity-scaling factor. 

As an example, consider one of the 12 control rod groups 

of the VVER-1200 reactor, specifically group №10. When 

completely inserted (h = 0%) into the core reactor, it 

introduces a negative reactivity of 1302.59 pcm. Utilizing 

the developed Python algorithm to simulate reactivity 

insertion steps for control rod groups with ρscaling = 

0.07041 pcm, the resulting data is illustrated in Fig. 2. 

 

Taking into account the two characteristics of the VVER-

1200 control rod mechanism, when moving group №10, 

the maximum step reactivity insertion is 6,7491 pcm per 

second. 

 

In Fig. 2, the curve is divided into three segments: a linear 

section between 20% and 60%, and two non-linear sections 

between 0% and 20%, and 60% and 100%, respectively. 

The linear part of control rod insertion/extraction is 

employed for reactor power regulation. Additionally, it is 

evident from this curve that at a 20% withdrawal of rod 

group №10, the integral rod worth is 209.82 pcm; at 40%, 

it is 622.42 pcm; at 80%, it is 1227.95 pcm, and at 100% 

withdrawal, the integral rod worth is 1302.59 pcm [27, 28]. 

 

 
 

Fig 2. VVE-1200 integral control rod worth of group №10. 

 

4. Results and Discussion 

To evaluate the developed reactor model, accounting for 

temperature feedback and considering the impact of xenon 

on total reactivity in the reactor core, a load-following 

mode operation scenario is proposed. The scenario spans a 

duration of 12 hours: the reactor reaches its nominal power 

and maintains it for the first three hours. Subsequently, 

power reduction commences and continues until reaching 

60% after 2 hours. This power level is sustained for 4 

hours, so after 9 hours from the initiation of the scenario, 

there is an increment in power until it reaches the reactor's 

nominal power after an additional 2 hours. The nominal 



Djaroum  et al./ Algerian Journal of Engineering and Technology 08 (2023) 212–219                                                                                  216 

 

power is then maintained during the final hour of the cycle. 

The simulation time step is set at 0.1 seconds, and the 

desired power is expressed as a percentage of the reactor's 

nominal power. The vectors for desired power and 

simulation time, along with the PID parameters, are 

provided as follows: 

-  0, 3, 5, 9, 11, 12 *3600tsim   

-  100, 100, 60, 60, 100, 100P
desired

  

- [KP, KI, KD] = [13.8005, 0.3285, 0.0036] 

  

The simulation results from the developed model are 

presented in two scenarios: one without considering the 

xenon effect (WOXE) and the other accounting for xenon 

effect (WXE) on the total reactivity in the reactor core. 

These results are visualized in Figures (3, 4, 5, 6, 7, and 8). 

 
Fig 3. Power variation with PID controller [100%-60%-

100%]. 

 

 
    Fig 4. Rod withdrawal from reactor core bottom. 

 

 
Fig 5. Coolant temperature variation. 

 

 

 
                    Fig 6. Xenon and Iodine relative concentration. 

 

 

 
 

  Fig 7. Partial reactivity due to rod movement, coolant 

temperature, and xenon. 
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Fig 8. Total reactivity in reactor core (unfiltered signal). 

 

Upon analyzing and processing the total reactivity signal 

result, depicted in Fig. 8, the application of filters enables 

the extraction of valuable insights regarding the total 

reactivity parameter within the reactor core. This extraction 

aims to scrutinize the dynamic behavior of the reactor core 

in response to various influences, such as temperature 

feedback and xenon. The outcome of this processing is 

displayed in Fig. 9.  

 

 
Fig 9. Total reactivity in reactor core (filtered signal). 

 

The simulation results are carefully examined to gain 

insights into the responses of the core reactor model 

(output parameters) and to assess the effectiveness of the 

power control strategy. In Fig. 3, it is observed that the 

relative reactor power, first without considering the xenon 

effect on total reactivity (WOXE) and then with its 

influence, shows a negligible deviation from the desired 

power in the absence of xenon effect. However, in the 

presence of xenon effect (WXE), there is a more significant 

deviation before the model stabilizes, indicating that the 

xenon effect widens the band of power regulation. 

Nevertheless, the proposed power control strategy utilizing 

a PID-Controller for monitoring reactor core power 

demonstrates good agreement with the desired power. 

Furthermore, Fig. 4 illustrates that the adjustment of 

control rods becomes more critical for power control in the 

presence of xenon effect. This allows for compensation of 

the negative reactivity introduced by xenon, ensuring a 

minimal deviation between reactor power and the desired 

level, especially at a sustained relative power level (60%) 

over 4 hours. 

The curve representing the variation in coolant temperature 

in Fig.5 shows that these fluctuations are a consequence of 

changing power levels. The feedback effect is effectively 

managed by making minor adjustments to the position of 

the control rods. Additionally, the negative feedback from 

the refrigerant is confirmed by the partial reactivity curve 

associated with the refrigerant temperature, as depicted in 

Fig.7. 

The dynamics of xenon and iodine, as depicted in Fig. 6, 

reveal that it takes approximately 9 hours of reactor 

operation to reach a stable state. From this point forward, 

xenon/iodine oscillations initiate and persist throughout 

subsequent cycles. Fig. 7 compares the reactivity 

contribution of the control rods to the total reactivity with 

that stemming from coolant temperature feedback and the 

xenon effect. It is observed that the negative coolant 

temperature feedback reactivity remains consistent 

regardless of whether the xenon effect is present or not. In 

Fig. 9, which presents the total reactivity in the reactor core 

for both scenarios (with and without the xenon effect), it is 

evident that the total reactivity offers valuable insights into 

the reactor's transition from initial criticality to a sub-

critical state. This transition is achieved by progressively 

introducing negative reactivity to reduce the power from 

100% to 60%. Subsequently, a different state of criticality 

is attained and maintained at this power level for 4 hours. 

To return to nominal power, a positive reactivity is 

inserted, and the reactor remains critical at this power level 

until the end of the cycle. 

5. Conclusion 

A nuclear reactor core was modeled based on the point 

kinetics equations and one delayed neutron groups.  Using 

the PID controller, the reactor power tracking capability 

was simulated with a load-following scenario of typical 

PWR. The proposed model takes into account the impact of 

feedback from fuel and coolant temperatures on reactor 

power control. In addition, the xenon concentration effect 

was also including in the model. Furthermore, the results of 

the simulations demonstrate the good reactor power 

tracking by the designed control strategy during a load 

following scenario. Therefore, it can be concluded that the 

developed reactor model can be used for further 

implementation of control strategies (such as Sliding 

Model Control, LQG/LTR, Fuzzy-PID, Optimal Control, 
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and Model Predictive Control). For the future works, 

advanced algorithms can be used to optimize PID gains. 

Moreover, alternative core reactor modeling methods and 

diverse power control strategies may be considered for 

implementing power control algorithms in nuclear reactors 

during load following operations. 
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