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1. Introduction 

     The study of censored lifetimes is used in 

various fields of research and various possibilities 

for modeling these data have been suggested. The 

first area of use and collection of survival data 

was in the biomedical sciences where it is used 

for therapeutic or epidemiological trials. In 

economics, we look for the time spent 

unemployed, in a job or between two employers, 

the duration of a transport trip, the life of a 

business or the amount of a “revolving” type loan. 

In Bayesian inference, survival analysis has 

gained increasing attention in recent years, but 

remains limited due to the scarcity of specialized 

software (one of the causes of this scarcity is the 

difficulty of automating Bayesian analyzes by 

compared to the frequentist approach), as well as 

the force of habit and the difficulty of adopting a 

particular statistical definition. The great 

importance of Bayesian inference in frequentist 

approaches is its great clarity and its theoretically 

consistent methodology, which allow us to 

deduce the results of richer and more direct 

explanations than those given by the classical 

approach. Unless we can assume a priori that the 

distribution of survival time obeys a parametric 

rule, thanks to many nonparametric methods, the 

most important of which is Kaplan-Meier, we can 

estimate the survival function S Several works 

have been based on the development of this 

estimator. Khizanov and Maĭboroda (2015), 

proposed a modification based on a mixing model 

with various concentrations. Rosse and Zieliński 

(1999) used local smoothing of the Kaplan-Meier 

estimator based on an approximation by the 

Weibull distribution function. Rosse and 

Zieliński (2002), introduce a Kaplan-Meier 

estimator based on a Weibull distribution 

approximation. Shafiq Mohammad et al (2007), 

presented a weighting of the Kaplan Meier 

estimator for heavily censored data under the sine 

function. Previous studies neglected the study of 

the prior parameter distribution in improving this 

type of estimate. In this article, we use some prior 

information integration methods to improve the 

estimation quality of the Kaplan Meier model. 

For this purpose, we have unconjugated a priori 
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distributions based on the lognormal distribution. 

This way of processing makes it possible to 

conclude that the use of the a priori information 

with the different ways proposed is sensitive to 

the choices of the parameters introduced. 

2. Bayes formula and posterior distribution 

     In the discrete case and if we consider 

(𝐻𝑖)𝑖∈(1…𝑛) the set of all the hypotheses (or else 

the causes or the circumstances) of the 

occurrence of an event E of non-zero 

probability. If the effect 𝐸 occurs at the same 

time as one and only one of the 𝐻𝑖 , i.e. 

𝐸 = (𝐸⋂𝐻1)⋃(𝐸⋂𝐻2)⋃…⋃(𝐸⋂𝐻𝑛), 

according to the theory of total probabilities we 

write 

𝑃(𝐸) = 𝑃(𝐸⋂𝐻1) + 𝑃(𝐸⋂𝐻2) + ⋯

+ 𝑃(𝐸⋂𝐻𝑛) 

=∑𝑃(𝐸⋂𝐻1)

𝑛

𝑖=1

=∑𝑃(𝐸 𝐻𝑖⁄ )𝑃(𝐻𝑖)

𝑛

𝑖=1

= 𝐸𝐻(𝑃(𝐸 𝐻𝑖⁄ )), 

the conditional probability of a cause 𝐻𝑖is given 

by 

   𝑃(𝐻𝑖 𝐸⁄ ) =
𝑃(𝐸⋂𝐻𝑖)

𝑃(𝐸)
=
𝑃(𝐸 𝐻𝑖⁄ )𝑃(𝐻𝑖)

𝐸𝐻(𝑃(𝐸 𝐻𝑖⁄ ))
, (1) 

equation (1) is Bayes' theory (or rule). 

The a posteriori distribution and defined by: 

    𝜋(𝜃 𝑥⁄ ) =
𝑓(𝑥 𝜃⁄ ) × 𝜋(𝜃)

∫ 𝑓(𝑥 𝜃⁄ )
𝛩

× 𝜋(𝜃)𝑑𝜃
     

=     
𝑓(𝑥 𝜃⁄ ) × 𝜋(𝜃)

𝑚(𝑥)
                                    (2) 

this a posteriori distribution is the combination 

of 

• 𝑓(𝑥 𝜃⁄ ) the density function of 𝑥 knowing 

the value of the random variable 𝜃. 

• 𝜋 (𝜃) models the a priori density function 

on 𝜃. 

• 𝑚 (𝑥) the marginal distribution of 𝑥.  

Expression (2) represents what we know and 

what we do not know before about the 

parameter considering the observed data; it is 

also the update of 𝜋 (𝜃) after observing our 

sample. 

      Once we have the data, the quantity 𝑚 (𝑥) 

is a normalization constant, which guarantees 

that 𝜋 (𝜃 ⁄ 𝑥) is indeed a probability 

distribution. We can write: 

  𝜋(𝜃 𝑥⁄ ) ∝ 𝑓(𝑥 𝜃⁄ ) × 𝜋(𝜃)                    (3) 

Equation (3) shows that Bayesian inference 

satisfies the likelihood principle: a posteriori, 

the information from the data comes 

exclusively from the likelihood 𝑓 (𝑥 ⁄ 𝜃). 

2.1. The Monte Carlo Method by Markov 

Chains (MCMC) 

     The Bayesian approach requires simulating 

sample sequences following the distributions of 

interest. However, these distributions are often 

multivariate, of non-standard type, so it is 

necessary to use sophisticated simulation 

methods such as Markov chains where a 

sequence of random variables (𝜃𝑡)𝑡≥1 is a 

Markovian chain of first order if the conditional 

distribution 𝜋(𝜃𝑡 𝜃𝑡−1, 𝜃𝑡−2, … , 𝑥⁄ ) =

𝜋(𝜃𝑡 𝜃𝑡−1, 𝑥⁄ ).The convergence of this chain is 

linked to a new concept called ergodicity. A 

sequence is said to be ergodic if it is possible to 

go from any realization a in the chain to any 

realization b. In another way the sequence of 

conditional distributions {𝜋(𝜃𝑡 𝜃0, 𝑥⁄ )} 
converges to the marginal distribution 

𝜋(𝜃 𝑥⁄ )for any value 𝜃0. In other words, the 

dependence of the chain on 𝜃0 gradually fades. 

Suppose that this convergence occurs before 𝑇. 

the statistical mean,  

1

𝑇
∑ 𝑔(𝜃𝑖)

𝑇+𝑛

𝑖=𝑇+1

, 

almost surely converges to 𝐸(𝑔(𝜃)). 

     The jump rules are governed by the kernel 

transition 𝐾(𝜃𝑡 , 𝜃𝑡+1), which is a mechanism 

describes the probability of moving from one 

state to another based. These rules constitute an 

important element in the ergodicity theorem. 

Definition 1 (The Monte Carlo method by 

Markov Chains (MCMC)). 

       The Markov chain Monte Carlo method is 

any method that produces an ergodic Markov 

chain whose stationary distribution is the 

distribution of interest. 

Note that in the case of 𝜃𝑡i.i.d we use the Strong 

Distribution of Large Numbers (LFDN) to 

make the approximation; on the other hand, in 

the case of 𝜃𝑡 generated by the MCMC 

methods, the ergodic theorem is used instead of 

LFDN because we have a dependency structure 

between the 𝜃𝑡 defined by the Markov chain 

Robert and Casella (2004). 
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The two most popular algorithms are the 

Metropolis-Hastings algorithm and the Gibbs 

sampling algorithm presented below. 

2.1.1. Gibbs sampling 

     Gibbs sampling is the most used MCMC 

algorithm, introduced by Geman and Geman 

(1984) within the framework of the restoration 

of satellite images, the idea of this algorithm is 

simple, to raise the difficulties of calculations in 

a complex model composed of n-parameters 

𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑑) where the distribution 

𝜋(𝜃𝑗 𝑥⁄ ) of a parameter / subset of 𝜃 is non-

standard, and when the full distribution 

𝜋(𝜃𝑗 𝜃−𝑗𝑥⁄ )  will often be standard, it is 

possible to simulate prints 

𝜃𝑗~𝜋(𝜃𝑗 𝜃−𝑗𝑥⁄ ), 

generate what will be called a Gibbs sequence 

(artificial sequences) as follows: 

The algorithm breaks down into the following 

points: 

1. Initialize 𝜃0 = 𝜃(1)
0 , 𝜃(2)

0 , … , 𝜃(𝑑)
0 ,  which 

is the first vector of elements in the 

string. 

2. Pose t ← 0 . 

3. To go from step 𝑡 to step 𝑡 + 1: 

 

                     

{
 
 

 
  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝜃1

(𝑡+1)
 𝑏𝑦 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑎𝑤 𝜋 (𝜃1

(𝑡+1)
𝜃2
(𝑡)
, … , 𝜃𝑘

(𝑡)
, … 𝜃𝑑

(𝑡)
, 𝑥⁄ ) (𝑎𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝜃2
(𝑡+1)

 𝑏𝑦 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑎𝑤 𝜋 (𝜃2
(𝑡+1)

𝜃1
(𝑡)
, 𝜃3

(𝑡)
, … 𝜃𝑑

(𝑡)
⁄ , 𝑥)

:

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝜃𝑑
(𝑡+1)

𝑏𝑦 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑎 𝜋 (𝜃𝑑
(𝑡+1)

𝜃1
(𝑡)
, 𝜃2

(𝑡)
…𝜃𝑑−1

(𝑡)
, 𝑥⁄ )

 

4. Change the value of 𝑡 𝑡𝑜 𝑡 ←  𝑡 +

 1, and go to 3. 

      Each turn of this algorithm describes a first 

order Markov chain due to the dependence on 

the previous realization. When the conditional 

distribution of each iteration is positive and for 

all 𝜃−𝑗, the chain is ergodic which implies the 

convergence of chain after iteration n towards 

its distribution of interest 𝜋 (𝜃 ⁄

𝑥) independently of the initial state  𝜃(0). So we 

write for all functions 𝑔: 𝐸 → 𝐼𝑅 integrable, we 

have: 

𝑙𝑖𝑚
𝑇→∞

1

𝑇
∑𝑔(𝜃𝑡) ↝ 𝐸𝜋[𝑔(𝜃)]

𝑇

𝑡=1

                 (4) 

2.1.2. Metropolis Hastings algorithm (MH) 

      The Metropolis-Hastings method is the first 

of the MCMC methods, it was developed by 

Metropolis et al (1953) in the fifties initially for 

particle physics, and generalized by Hastings 

(1970) in a more statistical framework in the 

year 1970.  The M-H algorithm can be written 

as follows (Begin (2010))    

Iteration 0: Give the initial value to 𝜃0. 

Iteration t : Update 𝜃𝑡 through 𝜃𝑡+1 , 𝑡 =
(1,2, … ), as follows: 

1. Generate 𝜃∗ ~𝑞(𝜃∗ 𝜃𝑡⁄ ) 

2. Calculate the α-value according to the 

Metropolis Hastings formula: 

𝛼(𝜃𝑡 , 𝜃
∗) = 𝑚𝑖𝑛 {1,

𝜋(𝜃∗)

𝜋(𝜃𝑡)

𝑞(𝜃𝑡 𝜃
∗⁄ )

𝑞(𝜃∗ 𝜃𝑡⁄ )
} 

3. Accept 𝜃∗ with the probability α such 

that : 

𝜃𝑡+1 = {
𝜃∗ 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝛼(𝜃𝑡 , 𝜃

∗)

𝜃𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦    [1 − 𝛼(𝜃𝑡 , 𝜃
∗)]

 

The probability 𝛼(𝜃𝑡 , 𝜃
∗) is called the 

acceptance ratio of H-M, and the acceptance 

rate of H-M represents the average of the 

acceptance probabilities over all iterations 

given by: 

�̅� = lim
𝑡→∞

1

𝑇
∑𝛼(𝜃𝑡 , 𝜃

∗
𝑡)

𝑇

𝑡=1

 

 

 

 

 

 

3. The Kaplan Meier Estimator 

The Kaplan-Meier estimator is defined by: 

   �̂�(𝑡) = ∏ (1 −
𝑑𝑖
𝑛𝑖
)

𝑖:𝑡(𝑖)<𝑡

                          (5) 

This estimator is also called by Anglo-Saxon 

statisticians “Product Limit Estimations 

(PLE)”. This estimator, which is a 

generalization of the notion of empirical 

distribution function, is based on the following 

idea: to survive after a time t is to be alive just 

before 𝑡 and not to die at time 𝑡. , if 𝑡𝑖 represents 

an instant during which there is the observation 

of at least one event, then the probability of 

survival at time 𝑡𝑖 is equal to the probability of 

having survived before 𝑡𝑖 multiplied by the 

"conditional" probability of surviving at time 𝑡𝑖.  
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The use of the term "conditional" means here 

that it is about the probability of surviving time 

𝑡𝑖 knowing that the individuals were survivors 

in 𝑡𝑖: 

          𝑆(𝑡𝑖) = 𝑃(𝑋 > 𝑡𝑖 𝑋 ≥ 𝑡𝑖⁄ ) ∗ 𝑆(𝑡𝑖−1) 

Let us call 𝑑𝑖 and  𝑐𝑖, the numbers of individuals 

who, respectively, know the event and exit from 

observation at 𝑡𝑖. The number n_i of individuals 

subject to the risk of experiencing the event at 

𝑡𝑖 corresponds to the set of individuals who, just 

before this instant 𝑡𝑖 was reached, had neither 

known the observed event, nor n 'were out 

4. The Bayesian conception of the Kaplan 

Meier estimator 

     In the frequentist approach, the number of 

deaths in the interval of time is a realization of 

a Binomial distribution written by: 

     𝑑𝑖~𝛽𝑖𝑛(𝑛𝑖 , 𝑞𝑖) 

or 

                          𝑞𝑖 = 1 −
𝑑𝑖
𝑛𝑖
                         (6) 

From a Bayesian perspective we assume an a 

priori for 𝑞𝑖,, and when the distribution used in 

the case of proportions is that of Beta, we set: 

                             𝑞𝑖~𝑏𝑒𝑡𝑎(𝛼, 𝛽)                 (7) 

In the Bayesian approach, equation (7) replaced 

by the a priori distribution of 𝑞𝑖 , this a priori 

distribution has several important 

characteristics in our situation: 

For the hyperparameters (𝛼, 𝛽), we find several 

propositions: 

      A vague a priori distribution, it is a proper 

distribution with a very large variance, 

according to this distribution, the a priori 

distribution is considered to be weak 

informative, and one uses this distribution for 

the regularization and the stabilization, it 

provides solutions in the use of algorithms. We 

pose: 

                 𝑞𝑖         ~𝛽(0,01,0,01)                  (8)  

5. Integration of the a priori distribution 

     Informative priors represent the subjective 

way of thinking where the a priori is based on 

the information available on the parameter 

obtained. Among these methods we find the 

histogram approach, the relative likelihood and 

the conjugate approach remains the most 

standard solution in the informative framework. 

The conjugate a priori distributions can be 

partially justified by an invariance reasoning. It 

is also possible to increase the robustness of the 

conjugate distributions by hierarchical models, 

before the rise of numerical computation, these 

families were practically the only ones which 

allowed computations to succeed. However, 

cases often arise in which an unconjugated prior 

is desirable, despite the increased mathematical 

difficulty. For example, generic databases often 

express epistemic uncertainty in terms of a 

lognormal distribution, which is not conjugated 

to the binomial likelihood function. In addition, 

the conjugate priors have relatively light tails 

and may influence the results too much in cases 

where there is little data that conflicts with the 

priors. The estimate provided by the data will 

generally lie in the tail of the prior distribution 

in such cases, where the prior probability is very 

low. In this section, we describe how to make 

an inference with a lognormal prior, which is a 

commonly encountered unconjugated prior. 

     The beta distribution is a bit more 

complicated algebraically. The mean is equal to 

𝛼 ⁄  ((𝛼 +  𝛽)) and the variance is a 

complicated expression in terms of the 

parameters 𝛼, 𝛽. The expression of the variance 

can be more conveniently rewritten in terms of 

the mean as mean (1 − 𝑚𝑒𝑎𝑛) / (𝛼 +  𝛽 +

 1), and it can be solved for 𝛼, 𝛽. 

     Development of an unconjugated 

(lognormal) prior - One of the things that makes 

the lognormal distribution attractive as a priori 

in PRA (Probabilistic Risk Analysis) is the ease 

with which it can encode uncertainty on a 

parameter which varies over several orders of 

magnitude. The uncertainty encoded by the 

lognormal distribution is generally not provided 

in terms of the distribution parameters (l and s) 

needed by OpenBUGS. More commonly, 

information is given in terms of a median or 

mean value and an error factor, or sometimes in 

terms of upper and lower bounds. 

In this method if the number of deaths in the 

interval of time is a realization of a Binomial 

distribution written by: 

     𝑑𝑖~𝛽𝑖𝑛(𝑛𝑖 , 𝑞𝑖) 

so 

                      𝑞𝑖~𝑙𝑜𝑔 − 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇; 𝜎
2)        (9) 

using the properties of the lognormal 

distribution, any of these sets of information can 

be translated into the l and s parameters needed 
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by OpenBUGS, as shown in the script snippets 

below. 

# Use the following lines if the median and the 

error factor are given: 

  mu <-log (median); tau <-pow (log (EF) /1.645, 

-2) 

# Use the following lines if the mean and error 

factor are given: 

mu <-log (mean) - pow (log (EF) /1.645, 2) / 2; 

tau <-pow (log (EF) /1.645, -2) 

# Use the following lines if the median and 

upper limit are given: 

mu <-log (median); tau <-pow (log (upper / 

median) /1.645, -2) 

6. Application 

      In this section, survival function is 

estimated in a clinical study for two 

pharmaceuticals (placebo and prednisolone), 

this example uses survival times for 42 patients 

with chronic active hepatitis. These patients 

were randomized into two equal groups, one 

was treated with prednisolone, the other 

received a placebo (see Held, 2010). In this 

exemple, patients with prednisolone are used. 

Table 1. Survival Bayesian Kaplan Meier. 

Time 
Total No 

of Deaths 

Total No 

of 

censored 

No at 

risk 

Kaplan 

Meier 

2 1 0 21 0.9545 

6 1 0 20 0.9082 

12 1 0 19 0.8624 

54 1 0 18 0.8169 

56 0 1 17 0.8164 

68 1 0 16 0.7686 

89 1 0 15 0.7198 

96 1 0 14 0.6233 

125 0 1 13 0.6228 

128 0 1 12 0.6223 

131 0 1 11 0.6218 

140 0 1 10 0.6211 

141 0 1 9 0.6204 

143 1 0 8 0.5414 

145 0 1 7 0.5406 

146 1 0 6 0.4502 

148 0 1 5 0.4492 

162 0 1 4 0.4482 

168 1 0 3 0.2985 

173 0 1 2 0.2969 

181 0 1 1 0.294 

     If we assume the absence of any a priori 

information on the estimated survival model, 

the choice of an uninformative a priori is 

obvious. We use in this article a conjugate prior 

distribution such that 𝛼 = 𝛽 = 0.01.  

 

Fig 1. The survival curve estimated according 

to the Bayesian Kaplan-Meier method with an 

a priori of beta. 

From Figure (1), it can be seen that at the start 

of the curve, 100% of the individuals in the 

sample are included in the treatment study of. 

After more than 146 days after using the 

treatment in the sample 50% of the patients had 

died. But, the treatment failure for the rest of the 

individuals in the sample lasts for a long time, 

for some it exceeds 180 days. If we assume the 

presence of information on the mean and the 

error factor as follows (prior.mean = 0.05, 

prior.EF = 5) then the survival function is given 

by the following form: 

 

Fig 2. The survival curve estimated according 

to the Bayesian Kaplan-Meier method with an 

informative a priori. 
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Fig3. The survival curves estimated according 

to the Bayesian Kaplan-Meier method with an 

a priori of beta and with an informative a 

priori. 

    In the comparison between the two 

informative and non-informative Kaplan Meier 

curves, we find a small difference which does 

not change the interpretation in our example in 

the tails of the survival curves and this because 

the probability of survival at time 𝑡𝑖 is equal the 

probability of having survived before 𝑡𝑖 
multiplied by the "conditional" probability of 

surviving over time 𝑡𝑖. 

 

Fig 4. the survival curves estimated according 

to the Bayesian Kaplan-Meier method with an 

a priori of beta and with an informative a priori 

according to several error factors. 

     We notice from fig (4), when the error factor 

increases the probabilities of survival also 

increase, so the more the uncertainty on the a 

priori information increases, the more the 

instantaneous risk decreases and the survival 

increases. The error factor chosen in Figure (3)  

and after this study of the effects of the error 

factors is a plausible choice. 

 

Fig 5. The survival curves estimated according 

to the Bayesian Kaplan-Meier method with an 

a priori of beta and with an informative a priori 

according to several a priori means. 

     We notice in fig (5), when the proposed a 

priori mean increases the probabilities of 

survival also decreased, so the more the 

uncertainty on the a priori information 

increases, the more the instantaneous risk 

increases and the survival decreases. The 

proposed a priori mean chosen on an 

informative basis in Figure (4) and after this 

study of the effects of different a priori means 

is a rational choice. In this way we can conclude 

that the use of the a priori information with the 

different proposed ways is sensitive in terms of 

treatment, and capable of changing the survival 

curve differently. 

Conclusion 

     This article has allowed us to understand 

how we use certain a priori information 

integration methods to improve the estimation 

quality of the Kaplan Meier model. For this 

purpose we have unconjugated a priori 

distributions based on the lognormal 

distribution. This way of processing makes it 

possible to conclude that the use of the a priori 

information with the different ways proposed is 

sensitive to the choices of the parameters 

introduced. 

Appendices (OpenBUGS code) 

▪ model 

▪ { 

▪ for (i in 1:m1) { 

▪ d1[i]~dbin(q1[i],n1[i]) 

▪ q1[i]~dlnorm(mu, tau) # Lognormal 

prior distribution for p 

▪ } 

▪ for (i in 1:m1){ 

▪ ce1[i]~dbin(0.01,0.01) 

▪ } 
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▪ for (i in 1:m1){ 

▪ qc1[i]~dbeta(0.01,0.01) 

▪ } 

▪ for (i in 1:m1){ 

▪ p1[i]<-1-q1[i] 

▪ } 

▪ n1[1]<- 22 

▪ for(i in 2:m1){ 

▪ n1[i]<-n1[i-1]-d1[i-1]-ce1[i-1] 

▪ } 

▪ for (i in 2:m1){ 

▪ s1[i]<-s1[i-1]*p1[i] 

▪  } 

▪ s1[1]<-p1[1] 

▪ tau <- 1/pow(log(prior.EF)/1.645, 2) # 

Calculate tau from lognormal error 

factor 

▪ # Calculate mu from lognormal prior 

mean and error factor 

▪ mu<-log(prior.mean) - 

pow(log(prior.EF)/1.645, 2)/2 

▪ } 

▪ list(m1=21,d1=c(1,1,1,1,0,1,1,2,0,0,0,0, 

▪ 0,1,0,1,0,0,1,0,0), 

▪ ce1=c(0,0,0,0,1,0,0,0,1,1,1, 

▪ 1,1,0,1,0,1,1,0,1,1), prior.mean = 0.05, 

▪ prior.EF = 5)

▪  
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