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Abstract 

Palms are an ecologically and economically significant family of plants, including many crops. Sound knowledge of the 

ecology of arbuscular mycorrhizal fungal (AMF) association in plants is essential to the sustainable cultivation of crops and  

the conservation of sensitive species. The current Review is the first -ever comprehensive critical analysis of literature on 

AMF in the sustainable cultivation and conservation of palms, which reveals the gaps in existing studies and explains the 

specific needs of future investigations on AMF in Palms. AMF in only 2% of the known palms are explored so far; a majority 

of wild palms and cultivated palms in many different regions remain unexplored. However, per the current literature, a high 

diversity of about 85 species of AMF from about 43 palms are known. The beneficial roles of AMF in palms include boosting 

productivity, assisting in the in-vitro raising of seedlings, and providing immunity to diseases and environmental stress. 

However, the identification of external and internal variables crucial to AMF association in palms in the field, long -term 

monitoring of AMF's beneficial influence in palms, and experimental application of AMF from wild palms in cultivated 

palms are further required. Overall, AMF dependence, responsiveness, and effectiveness in palms also need thorough 

investigation in the future. 
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1. Introduction  

Palms, one of the most ecologically and economically versatile plants [1], mainly tropical and subtropical 
and rarely temperate [2, 3], belong to the family Arecaceae. There are about 2600 species of palms in the world, 
belonging to 181 genera [3, 4], growing in diverse geographic areas [5], including swamps, deserts, coasts, and 
highlands up to 3000 meters high [6]. Palms are significant economic crops in many countries, widely cultivated 
for various industrial products, mainly oil and fruits, fiber, wood, starch, sugar, juice, and wine [7, 8]. 
Accordingly, Arecaceae stands out as a unique plant family that is highly useful to humans [9]. In addition to 
the commercially cultivated palms such as coconut palm (Cocos nucifera L.), date palm (Phoenix dactylifera 
L.), and African oil palm (Elaeis guineensis Jacq.) [10, 11], there are many palms cultivated for ornamental and 
medicinal purposes [9, 12, 13, 14, 15, 16]. Palms and palm products will continue contributing significantly to 
human life and will remain inevitable to human sustainability and progress.  
          Palm cultivation is currently facing diverse challenges worldwide. Heavy usage of chemical fertilizers in 
palm groves [17] causes harmful effects on soil fertility and ecosystems. The success of acquiring sustainability 
in palm cultivation and palm-based industries depends on finding alternative measures to avoid excessive use of 
chemicalized inputs, such as regular applications of organic or biofertilizers [18, 19, 20, 21, 22]. An expert 
recommendation of 560 g N, 320 g P2O5, and 1200 g K2O for an adult coconut tree in two equal splits per year 
[23] shows the burden of chemical addition into soils [24] in palm fields. Often, farmers add fertilizers 
excessively, exceeding the recommended doses [25]. Reducing chemicalized inputs into agricultural fields is 
also significant to 'environment safety' and 'safe food for all' as envisaged in the UN goals for the future world 
[26]. Since sustainability in agriculture is one of the crucial goals of the UN Sustainable Development Goals 
2030 (SDG 30), it cannot be fulfilled without taking measures for the sustainability of palm cultivation as well.  

The plant-microbial interaction plays a crucial role [27] in improving all kinds of crops' sustainability and 
performance, especially in a less or non-chemicalized or organic agricultural environment. Among the diverse 
types of microbial associations in plants [28], the symbiotic mycorrhizal association is one of the earliest 
adaptations subjected to about 400 million years of evolution [29]. Among the natural mycorrhizal associations 
in plants, the arbuscular mycorrhizal fungi (AMF) are well-known natural microbial associates of plants with 
varying dependence, responsiveness, and effectiveness [30] concerning plants, soils, and AMF. 

The AMF is essential to enhance plant nutrition and to minimize chemical fertilizer inputs to crops [31]. 
The introduction of specific AMF into crop fields is crucial in improving soil health by enhancing soil 
aggregation [32, 33] and helping plants resist stress and grow healthy, even in heavy metal-contaminated soils 
[34]. Recently, AMF has been identified as inevitable in organic agriculture [35].  

Khudairi [36] first demonstrated AMF association in date palms. However, [37], for the first time, 
explained its beneficial roles in the peach palm (Bactris gasipaes). Since then, the beneficial roles of AMF as a 
significant microbial symbiont actively involved in the palm′s nutrient supply have been demonstrated by many 
authors in diverse palms [38, 39, 40, 41, 42]. However, despite the great diversity of palms, the AMF 
associations in only a few cultivated palm species have been intensively investigated. It is now well known that 
palms with a coarse root system characterized by limited root branching and root hairs require mycorrhizae to 
meet their high demand for nutrients to support the large biomass and fruit production [43, 44]. However, the 
investigation on AMF concerning root morphology and architecture of palms is quite limited [45, 46, 47].  

St. John [48] perhaps presents the first historical review of AMF and their role in cultivating palms. Since 
then, many new studies on AMF in diverse palms have appeared in the literature. However, reviews are 
available on the status of mycorrhizal research and the beneficial role of AMF association only on two 
cultivated palms, the oil palms [49, 50] and date palms [43, 51]. It may be noted that although the information 
on AMF association in about 43 palms, including oil palm, date palm, and coconut palm, is available in the 
literature, a comprehensive review of the entire literature on AMF association in all the studied palms together 
has not yet been done. Since AMF association is an established reality in most of the cultivated palm species 
[52, 53, 54, 55, 56] such a complete review of the literature on AMF in Arecaceae has become highly essential, 
especially in advancing further research on sustainable palm cultivation and conservation of endangered and 
threatened palm species. The current review enabled the fulfillment of this task. 

The primary goals of the current review included: (1) Identification of AMF diversity known in palms per 
the existing literature; (2) Understanding the root colonization pattern known in palms and checking whether the 
pattern of root colonization concerning root morphology and architecture is sufficiently investigated; (3) 
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Understand whether a seasonal variation of AMF in palms is known per existing literature; (4) Know the exact 
beneficial effect of mycorrhizae on palm growth, production, and soil health; (5) Check whether the role of 
AMF in alleviating various environmental stresses and diseases in palms is known; (6) Know the extent of 
available information on variables (plant, fungal and environmental) concerning AMF in palms; (7) Identify 
further research requirements on judicious application of AMF as a biological tool in palms. The current review 
represents the first critical analysis of all the existing research information on AMF in diverse palms. It explains 
the significant gaps in research information on mycorrhizal application in palms for sustainable farming and the 
scope of further research on the conservation of rare palms.  

2. Materials and Methods 

The methodology employed was similar to recent reviews on AMF in other plants [57, 58, 59]. The 
literature period was set from the first available study on AMF in date palms in 1969 to the most recent AMF 
studies in diverse palms up to 2023. The bibliometric studies on AMF in palms are systematically carried out 
using primary databases such as Google Scholar, JSTOR, PubMed, Science Direct, SciELO, and Web of 
Science. The main keywords chosen to find out the literature for the current review included "arbuscular 
mycorrhizal fungi," "AMF," "Mycorrhiza," "occurrence," "diversity," "seasonal changes," "Palms," "coconut 
palm," "date palm," "oil palm," "palm cultivation," "ecosystem sustainability," "crop productivity," 
"environmental factors," "stress alleviation," "soil health" " variables," "root morphology" and "root 
architecture." Among them, keywords such as "Palms," "coconut palm," "date palm," "oil palm," and "palm 
cultivation" were searched along with each of the other keywords individually and in diverse combinations per 
Boolean logic for obtaining the maximum research reports on AMF concerning palms in the literature. 
Mendeley Desktop was used to arrange literature systematically and retrieve the required information using the 
keywords mentioned above. Out of the 246 research papers collected using the keywords mentioned above, only 
118 were found relevant as research pertaining to AMF in palms. The collected literature was analyzed using 
Microsoft Excel, and the number of literature country-wise (Fig. 1) and year-wise (Fig. 2) are graphically 
shown (as per the data on Web of Science) below to provide an overview of AMF concerning palms in the 
world. 

 

Figure 1 Graphical representation of the country-wise distribution of literature related to AMF in palms. 
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Figure 2 Year-wise studies published on AMF symbiosis in Palms as per Web of Science between 1990-
2023 

 

3. Results and Discussion 

       AMF diversity in palms:  

Numerous studies have shown the natural occurrence of AMF in the soils of palm fields, as well as the presence 
of mycorrhizal structures inside the palm roots [36, 53, 54, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69]. Among the 
field and experimental studies on AMF diversity and root colonization in palms, most of the studies were on 
AMF in the date palm (17 studies), followed by oil palms (14 studies) and coconut (9 studies). A review of the 
literature on date palms by Al-Karaki [43] shows that it is very responsive to the mycorrhizal association, and 
AMF application is essential to sustainable palm cultivation. Similarly, in a review of the mycorrhizal status and 
applications of AMF in oil palms [49], the significance of AMF for its successful cultivation is emphasized. A 
critical summary of the AMF diversity and AMF root colonization characteristics in palms per the existing 
literature is given in Table 1 and Table 2.  

  Table 1: Literature on diversity of arbuscular mycorrhizal fungi in palms. 
 

Palms and their 

common names 

AMF species/ Genera 

/ Families 

Morphologica

l or 

Molecular 

Country References  

Acoelorrhaphe 

wrightii (Griseb. & 

H. Wendl.) H. 

Wendl. Ex Becc 

(Palmetto palm or 

Tasiste) 

 

Acaulospora (4 spp.), 5Claroideoglomus (2 

spp.), Diversispora (1 sp.), Entrophospora 

(1 sp.), Funneliformis (2 spp.), Gigaspora 

(1 sp.), 8Glomus (3 spp.), Paraglomus (1 

sp.), Rhizophagus (3 spp.), Sclerocystis (2 

spp.), Septoglomus (1 sp.) and 
3Scutellospora (1 sp.) 

Morphological  Mexico  [70] 

Areca catechu L. 

(Arecanut or Betel 

nut palm) 

Acaulospora (1 sp.), 5Claroideoglomus (1 

sp.), Funneliformis (3 spp.), 9Glomus (4 

spp.), and Rhizophagus (1 sp.) 

Morphological India  [54, 71] 

Attalea speciosa 

Mart. ex-Spreng.  

(Babassu palms) 

Acaulospora (6 spp.), Cetraspora (1 sp.), 

Entrophospora (1 sp.), Funneliformis (1 

sp.)  

Fuscutata (1 sp.), Glomus (3 spp.), 

Orbispora (1 sp.), Sclerocystis (1 sp.), 

Morphological  Brazil  [72]  
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Scutellospora (1 sp.)  

 

Bactris gasipaes 

Kunth (Peach palm) 

Glomus (14 spp.) and Acaulospora (8 spp.) Morphological  Colombia  [13]  

Bactris major Jacq. Acaulospora (1 sp.), Gigaspora (1 sp.), 

Glomus (3 spp.) and Scutellispora (1 sp.) 

Morphological Mexico  [46] 

Bactris mexicana 

Mart. 

Acaulospora (1 sp.), Glomus (2 spp.) Morphological Mexico  [46] 

Butia yatay (Mart.) 

Becc. 

Acaulospora (16 spp.), Archaeospora (1 

sp.), Claroideoglomus (2 spp.), 

Entrophospora (1 sp.), Funneliformis (2 

spp.), Gigaspora (4 spp.), Glomus (9 spp.), 

Racocetra (2 spp.), Rhizophagus (2 spp.) 

and 2Scutellospora (7 spp.) 

 

Morphological Argentina  [73, 74, 75, 76]  

Coccothrinax 

crinite (Griseb., & 

H.Wendl. ex 

C.H.Wright) 

Becc.(Old man 

palm” or “Palma 

petate) 

Acaulospora (3 spp.), Funneliformis (2 

spp.), Gigaspora (1 sp.), 10, 13Glomus (7 

spp.), 1Kuklospora (1 sp.), Scutellospora 

(1 sp.) and 12Viscospora (1 sp.) 

Morphological  Western Cuba  [77]  

Cocos nucifera L. 

(Coconut palm) 

Acaulospora (5 spp.), 5Claroideoglomus (3 

spp.), Dentiscutata (1 sp.), Diverssipora (2 

spp.), Funneliformis (3 spp.), 7, 

11Gigaspora (8 spp.), 9, 10Glomus (21 spp.), 

Redeckera (1 sp.), Rhizophagus (2 spp.), 
3Scutellospora (1 sp.), Septoglomus (1 sp.) 

Morphological India  [54, 55, 62]  

Acaulospora, Claroideoglomus, 

Diversispora, Dominikia, Gigaspora, 

Glomus, Racocetra, Redeckera, 

Rhizophagus, Sclerocystis and 

Septoglomus 

Morphological 

and molecular 

 

Mexico  [78]  

Acaulospora, Gigaspora, Glomus, and 

Scutellospora  

Morphological Lakshadweep [79]  

Desmoncus 

orthacanthos Mart.  

Acaulospora (1 sp.) 

Glomus (1 sp.) 

Morphological Mexico  [46]  

Elaeis guineensis 

Jacq (Oil palm) 

Acaulospora, Gigaspora, Glomus, and 

Sclerocystis  

Morphological Malaysia  [80]  

Twelve glomalean fungi with coarse 

hyphae in the oil palm rhizosphere. 

Morphological  Malaysia  [81]  

Acaulospora, Dentiscutata, Funneliformis, 

Gigaspora, Glomus, Scutellospora and 

Rhizophagus  

Morphological Thailand  [64]  

Acaulospora, Glomus, and Gigaspora  Morphological  Indonesia  [68]  

Acaulospora (1 sp.) Morphological 

and molecular 

Indonesia  [82]  

 

Euterpe oleracea 

Mart (Naidi palm) 

AMF families of Ambisporaceae, 

Claroideoglomeraceae, Diversisporaceae, 

Glomeraceae and Paraglomeraceae 

 

Morphological  Colombia  [67]  

Metroxylon sagu 

Rottb (Sago palm) 

Acaulosporaceae, Ambisporaceae, 

Claroideoglomeraceae, Gigasporaceae, 

and Glomeraceae 

Molecular Malaysia  [83]  
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Phoenix dactylifera 

L. 

(Date palm) 

6Glomus (1 sp.) Morphological Saudi Arabia  [61]  

Acaulospora (3 spp.), 6,9,12Glomus (5 spp.) 

and Scutellospora (2 spp.) 

Morphological Morroco  [53]  

Acaulospora (1 sp.), 4,5,8,9,10,12Glomus (12 

spp.), Paraglomus (1 sp.), Scutellospora (2 

spp.) and Racocetra (2 spp.) 

Morphological 

and molecular  

Southern 

Arabia  

[84]  

5Claroideoglomus (1 sp.), Diversispora (2 

spp.) 12Funneliformis (1 sp.) and 

Septoglomus (1 sp.) 

Morphological 

and molecular  

Oman  [85, 86]  

Acaulospora (3 spp.), 5,6,9,12Glomus (9 

spp.) 7Scutellospora (3 spp.) 

Morphological Morocco  [87]  

Acaulospora (1 sp.), 6,9,12,13Glomus (5 spp.) 

Sclerocystis (1 sp.) and Scutellospora (1 

sp.) 

 

Morphological Tunisia  [88]  

Acaulospora, Glomus, and Sclerocystis Morphological Morocco  [89]  

 

Dominikia (1 sp.) Entrophospora (1 sp.) 

Funneliformis(1 sp.), Rhizophagus (1 sp.) 

 

Morphological 

and molecular  

Tunisia  [66]  

Acaulospora (2 spp.), 5Claroideoglomus (1 

sp.), Funneliformis (1 sp.), Gigaspora (3 

spp.), 6Glomus (3 spp.) Racocetra (1 sp.), 

Rhizophagus (1 sp.), 3,7Scutellospora (2 

spp.) 

Morphological South-eastern 

Algeria  

 

[90]  

Septoglomus (2 spp.) 

 

Morphological 

and molecular  

Arabian 

Peninsula  

[91]  

5Albahypha (1 sp.), 5Claroideoglomus (1 

sp.), Funneliformis (1 sp.), Pervetustus (1 

sp.), 9Rhizoglomus (1 sp.), Septoglomus (1 

sp.) 

 

Morphological 

and molecular  

Morocco  [92]  

Salacca zalacca 

(Snake fruit or 

Salak) 

Glomus (3 spp.) and Entrophospora (1 sp.) Morphological 

and molecular  

Indonesia  [65]  

Serenoa repens (W. 

Bartram) Small  

(Saw palmetto) 

Gigaspora and Glomus  Morphological  Florida  [45]  

 

New names of certain AMF species based on recent AMF phylogeny http://www.amf-phylogeny.com/: 
1Acaulospora kentinensis; 2Cetraspora gilmorei; 3Dentiscutata nigra, D. erythropus, D. heterogama ;  
4Diversispora eburnea; 5Entrophospora etunicata, E. drummondi, E. claroidea, E. lutea; 6Funneliformis 
mosseae, F. monosporum;7 Racocetra gregaria, R. fulgida, R. coralloidea; 8Rhizoglomus microaggragatum; 
9Rhizophagus fasiculatus, R. aggregatum, R. microaggragatum, R. intraradices, R. clarus, R. in vermaius, R. 
irregularis; 10Sclerocystis sinuosum, S. clavisporum, S. coremioides, S. liquidambaris, S. rubiformae, S. 
taiwanense; 11Scutellospora aurigloba; 12Septoglomus constrictum, S. africanum, S. viscosum;  13Sieverdingia 
tortuosa. 

 

 

 

 

http://www.amf-phylogeny.com/
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Table 2: Literature on root colonization characteristics of arbuscular mycorrhizal fungi in Palms.  

Name of Palms and their 

common names  

Root colonization characteristics: range 

(%), AMF structures, and pattern/ 

morphology 

Source of roots  References 

Acoelorrhaphe wrightii  

(Palmetto palm or Tasiste) 

A, H, and V; Arum type Field, nursery [93]  

24-67%; IH and V; Arum type Field  [70]  

Areca catechu L.  

(Arecanut or Betel nut palm) 

70.6%; A and V; Arum and Paris types Field [52]  

15-57.16%; A, H and V Field  [54]  

50.8-77.5%; AC, H and V; Paris type Field  [71]  

Arenga engleri Becc. 

(Taiwan sugar palm or dwarf 

sugar palm) 

 Field  [48]  

Astrocaryum mexicanum Liebm. 

Ex Mart.  

(Mexican forest palm) 

40-50%; HC and V; Paris type Field  [94]  

Attalea speciosa Mart. ex-

Spreng. (Babassu palms) 
34.2- 49.6% Field  [72]  

Bactris gasipaes Kunth. 

(Peach palm) 

 Field  [37]  

 Greenhouse  [48]  

21%; A and HC; Arum and Paris types Field  [95]  

58-90%; IRM, V and A  Field  [13]  

Bactris major Jacq.  62%; A and V Field  [46]  

Bactris mexicana Mart. 42%; A and V Field [46]  

Brahea armata S. Watson  

(Mexican blue palm) 

A, H, and V  Greenhouse [96]  

AC and H; Intermediate type Greenhouse [47]  

Borassus flabellifer L (Palmyra 

palm or toddy palm) 
70.6%; A and V; Arum and Paris types Field  [52]  

Butia yatay 96%; A; Arum type Field [74]  

Calamus sp.   Field  [48]  

Caryota monostachya Becc. 

(Dwarf fishtail palm) 
 Field  [97]  

Caryota urens L. (Jaggary 

Palm, solitary fishtail palm, 

toddy palm) 

 Arboretum [48]  

Chamaerops humilis L.  

(Dwarf Fan Palm or European 

Fan Palm) 

 Greenhouse [48]  

 A, H, and V Greenhouse [96]  

AC, H, and V; Intermediate type Greenhouse [47]  

Coccothrinax argentata (Jacq.) 

L.H. Bailey 

(Florida Silver palm) 

A, H HC, and V; Arum type Field, nursery [93]  

Coccothrinax crinite (Griseb., & 

H.Wendl. ex C.H.Wright) 

Becc.(“Old man palm" or 

"Palma petate”) 

51- 67%; A, HC and V; Intermediate type  Field  [77]  

Cocos nucifera L. 

(Coconut palm) 

 Field  [48]  

 Field  [38]  
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56.8-95.2% Nursery  [62]  

65.7%-70.6%; A and V; Arum type Field  [52]  

56.4-77.2%; A, H and V Field  [54]  

32.33%- 55.17%; A, H and V; Arum type Field  [55]  

 Field  [78]  

53.33-61.11%; A, IRRH and V; Paris-type  Field  [79]  

Desmoncus orthacanthos Mart.  

51%; A and V Field  [46]  

5-34%; IRRH; Paris type Field  [98]  

Elaeis guineensis Jacq (African 

Oil palm) 

 

 Field  [48] 

32.49-52.18% Nursery  [17]  

More than 70%; A, H, HC, and V; Arum and 

Paris type 
 Nursery [99]  

75.8%, 82.9% Nursery  [100]  

25-31% Greenhouse [171]  

58% Nursery [101]  

97-100% Nursery  [102]  

36.3%; A, H and V Nursery  [103]  

46-55% Field, greenhouse [56]  

Euterpe edulis Mart. 

(Juçara, jussara  açaí-do-

sul or palmiteiro palm) 

 Field  [48]  

Field grown palms-6.5%, palm seedlings-

14.3% 
Field, greenhouse [104]  

 Euterpe oleracea Mart.  

 (Naidi palm) 

 Field  [48]  

 Greenhouse [48]  

4.3 – 10.2 % Field  [67]  

Jessenia bataua (Mart.) Burret 

(Pataua palm)  
 Greenhouse [48]  

Livistona chinensis (Jacq.) R.Br. 

ex-Mart. 

(Chinese fan palm  or fountain 

palm) 

 Field  [48] 

Metroxylon sagu Rottb.  (Sago 

palm) 
39.2- 73.2%; A, H and V Field  [83]  

Nypa fruticans Wurmb. (Nipa 

palm or Mangrove palm) 

63.3%-81.0%; A and V; Arum and Paris 

types 
Field  [52]  

Oenocarpus bacaba Mart. (Turu 

palm) 
 Field  [48] 

Phoenix canariensis Chabaud. 

(Canary Island date palm) 

 A, H, and V Greenhouse [96]  

AC, H, and V; Intermediate type Greenhouse [47]  

Phoenix dactylifera L (Date 

palm) 

 Field  [48] 

90% Field  [61]  

72%; A, IRRH and V; Arum type Field  [53]  

A, H, and V Greenhouse [96]  

AC, IRH, and ICH; Intermediate type Greenhouse [47]  
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7- 60%; A, IRRH and V Field  [87]  

more than 60%; A, H and V Field  [88]  

>70%; H and V Field  [66]  

15.7-43.8%; A, H and V 
In vitro raised 

palm plantlets 
[105]  

91% Field, green house [92]  

Phoenix paludosa Roxb. 

(Mangrove date palm) 
81%; A and V; Arum and Paris type Field  [52]  

Pseudophoenix sargentii H. 

Wendl. Ex Sarg.  (Florida 

cherry palm or buccaneer palm) 

A, H, and V; Arum type Field, nursery  [93]  

Rhapis excelsa (Thunb.) A. 

Henry (Broadleaf lady palm or 

bamboo palm) 

 Green house [48] 

Rhapis humilis Blume (Slender 

Lady Palm) 
 Green house [48] 

Roystonea elata (Bart.) F. 

Harper 

(Florida royal palm) 

 Field [48] 

Sabal palmetto (Walter) Lodd. 

ex-Schult. & Schult.f. (Cabbage 

palm or sabal palm) 

 Field [48] 

A, H, HC, and V; Arum type Field, nursery [93]  

Salacca zalacca (Gaertn.) Voss 

(Snake fruit or Salak) 
93.33- 100%; A, H and V Field [65]  

Serenoa repens (W. Bartram) 

Small (Saw palmetto) 

A, HC, and V; Arum type Field, greenhouse [45]  

A, H, HC, and V; Arum type Field, nursery [93]  

Syagrus romanzoffiana (Cham.) 

Glassman  

(Queen's palm) 

 Field  [48]  

Thrinax morrisii H. Wendl. 

(Brittle thatch palm or critical 

thatch palm) 

A, H, and V; Arum type Field, nursery [93]  

Trithrinax campestris 

(Burmeist.) Drude & Griseb. 

(Caranday palm) 

A, ICH and IRH, V; Intermediate type  Field  [106]  

Washingtonia filifera (Lindl.) H. 

Wendl (California Fan Palm) 
 Field  [48]  

A- arbuscules, H- hyphae, V- vesicles, AC- arbusculate coils, HC- hyphal coils, ICH- intercellular hyphae, IRH- 
intracellular hyphae, IRRH- intra-radical hyphae and IRM- intra-radical mycelium 
Although Table 2 shows that most palms are mycorrhizal, nonmycorrhizal condition is reported in particular 
palms such as Areca catechu, Cocos nucifera, Jessenia bataua, Phoenix dactylifera, Phoenix roebelenii, 
Syagrus spp. [48], Wallichia mooreana [97] and weak mycorrhizal condition is reported in Syagrus 
romanzoffiana [104]. Altogether about 85 species of AMF are known from currently studied palms. A similar 
high diversity of AMF has already been reported in medicinal plants [107] and Acacia trees [108].  
Generally, AMF species associated with most tree species belong to the genera of Glomus and Acaulospora 
[109, 110, 111, 112, 113]. Similarly, members of the family Glomeraceae are reported as the dominant AMF per 
the limited literature available on AMF concerning palms, especially in cultivated palms, such as date, coconut, 
and oil palms. Moreover, among the 38 species of AMF so far reported in date palms, Glomus spp. (Glomus 
spp. are now known by different names) is the most frequent one, followed by Acaulospora spp. and 
Rhizophagus spp. Among the Glomus spp., (Funneliformis mosseae (T.H. Nicolson & Gerd.) C.Walker & A. 
Schüssler = Glomus mosseae) is the most frequent one so far reported in date palms (five studies among the 
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total fifteen reports in date palms are about Funneliformis mosseae). Geographically, the reports (including field 
studies and experiments) on AMF in date palms are available from 45 countries, but information on the 
particular species is known from four countries (Saudi Arabia-1, Morocco-2, Tunisia-1, and Algeria-1). In 
contrast, Glomus spp., Acaulospora spp., and Gigaspora spp. are the dominant AMF associates in coconut 
palms. Gigaspora decipiens I.R. Hall & L.K. Abbott and Glomus fasciculatum (= Rhizophagus fasciculatus C. 
Walker & Schuessler) are the common species in coconut palm (known in three studies among the total eight 
studies). However, Glomus spp. and Acaulospora spp. are the dominant AMF in most of the wild and 
ornamental palms. Besides the commercially cultivated palms, AMF status in some palm forests is also 
available in the literature [73, 74, 75, 76]. Most authors report the diversity of AMF in palm forests, whereas 
others report root colonization or spore count and density of AMF in the palm forest fields.  
The high level of AMF richness in the palm rhizosphere emphasizes the importance of AMF as a natural 
biological partner for the sustainable growth and production of palms. It may be noted that among the AMF 
investigations in 43 palms so far conducted, the absence of its association is reported in palms of certain specific 
fields, and the association is regarded as weak in some cases [48, 104, 114]. However, since Arecaceae, the 
palm family, is large (2600 species), the available studies on AMF diversity in the 43 species explored (less than 
2%) may be considered nominal. Even among the available studies, despite the wide distribution and great 
economic importance of cultivated palms, the reports on AMF association are limited to studies of such palms 
in some areas of about 45 countries so far explored. AMF association in palms of not even a single country or a 
particular climatic region within a country or over countries is fully explored.  
Moreover, reports on AMF in palms concerning palm varieties are rare, such as in coconut [62, 63] and date 
palms [88]. The AMF association in palm concerning palm varieties may help use it as a biological tool in the 
sustainable cultivation of high-yielding palms. Therefore, the task involved in exploring the diversity of AMF in 
palms is arduous. 
Mayakrishnan et al. [115] have reported a wide occurrence of fine root endophytes, which form hyphae, hyphal 
coils, and fine arbuscules in the roots of six species of palms, including coconut palm, in Tamil Nadu of South 
India. Therefore, further investigations on the extent of fine root endophytic flora in roots have also become 
significant in the AMF diversity explorations in palms.  
Although the significance of high throughput molecular techniques has been emphasized in exploring the 
biodiversity of AMF in crop fields [116], such methods are rarely applied in palm fields [65, 66, 78, 82, 83, 84, 
85, 86, 91, 92]. Molecular methods of determining the diversity of specific AMF species are significant in 
exploring the AMF diversity of palms in wild environments. Since many wild palms are resistant to pests and 
diseases [117], the AMF associates of such palms are to be explored. It may provide an opportunity for 
experimental exploration of the same in cultivated palms to improve their resistance to diseases and pests.  
AMF dependence, responsiveness, and effectiveness in palms 

Along with diversity studies, the extent of dependence, responsiveness, and effectiveness of specific AMF [30] 
in palms are significant. Host responsiveness to AMF is influenced by the soil environment, especially soil 
phosphorus [118, 119]. Soil receptivity of AMF is also a significant topic of AMF application in crops [120, 
121]. Another vital area of investigation on AMF in field studies is the influence of plant interactions on AMF 
activities in soil for mineral accumulation in host plants [122]. Therefore, in the future, AMF field diversity 
studies concerning soil environmental conditions will be more desirable, as emphasized in the works of Wang et 
al. [113]. Similarly, Wu et al. [123] emphasize the effect of AMF on leaf Nitrogen (N), Phosphorus (P), and 
Potassium (K) stoichiometry concerning plant life cycle, plant growth habits, and AMF types in soils, which are 
useful in studies for understanding the role of specific AMF in palms in the future.  
Additionally, since plant mycorrhizal dependency and responsiveness and AMF effectiveness in plant roots 
depend on many internal (morphologic, genetic, and physiological) and external variables, intensive studies are 
desirable for using AMF as a biological tool in the sustainable cultivation of palms. A meta -analysis of the 
literature on AMF in plants has shown that enhanced nutrient uptake by plants in association with AMF depends 
on changes in root characteristics such as root elongation, formation and elongation of lateral roots, root hairs, 
root surface area, and root volume [124]. Such information on AMF’s influence on root characteristics is 
available in some studies on AMF in a few cultivated palms such as coconut palm [125, 126], date palms [40, 
127, 128, 129, 130, 131, 132, 133, 134] and oil palm [17, 39, 56, 101, 103, 135]. The details of the influences 
are described in Table 3. Therefore, emphasis on studies focusing on the impact of AMF on palm root 



Sreeja and Ray / Alger. j. biosciences 05(02) (2024) 067–103                                                                                                77 

 

 

characteristics is desirable in the future. Such studies may improve the productive application of AMF in 
economically significant palms.  
AMF colonization pattern in palm roots 
The root colonization pattern of AMF and AMF concerning root morphology or root architecture in palms per 
the existing literature is shown in Table 2. Two primary classes of mycorrhizal patterns, the Arum and Paris 
types, are observed in the plant roots [29, 136]. The Arum type with arbuscules and intercellular hyphae is the 
most common AMF pattern observed in the roots of cultivated crops. The Paris-type with extensive hyphal 
coils and intracellular hyphae without arbuscules is the AMF pattern found in the roots of ferns, gymnosperms, 
and many wild angiosperms such as forest herbs and trees [137]. However, an intermediate type with hyphal 
coils and arbuscules are characteristic features of AMF in certain Angiosperms [138].  
According to the existing literature, Arum type, intermediate type, and Arum and Paris type colonization 
patterns are reported in the Arecaceae family. While the Arum and ‘Arum and Paris’ fungal colonization is 
reported in most date palm roots, Arum and Paris types of root colonization is found in coconut, depending on 
the environmental characteristics of fields or cultivars. In the wild and ornamental palms, Arum type, Paris type, 
Arum and Paris type, and intermediate type of AM morphology are reported. Factors such as plant 
physiological conditions, plant phenological stages, root morphology, fungal species, and external 
environmental variables may concern AMF root colonization patterns, such as Arum or Paris or Intermediate 
type in plant roots [138]. Investigating factors significant to particular colonization patterns is essential in 
understanding the AMF activity in plants [29]. Since the studied palms show all three patterns of root 
colonization, such studies concerning factors controlling root colonization patterns may be desirable in palms in 
the future. 
AMF Concerning Root Morphology and Root Architecture 

AMF are generally more prevalent in monocotyledons than dicotyledons, probably due to their preference for 
fibrous root systems [139]. Moreover, root characteristics such as branching and the number of fine roots in 
plants are significant in accepting AMF as an associate [140]. However, investigations on root morphology 
concerning AMF association are rare in palms and have been reported in three studies alone . Fisher and 
Jayachandran [45] observed AMF most frequently in the thinnest roots of a palm, where the mycelia are 
restricted to only the outer cortex. However, Carrillo et al. [46] observed AMF in the second and third-order 
roots of three palms they studied, where the fungal mycelia are restricted to the inner cortex. Later, Dreyer et al. 
[47] observed that AMF colonization is limited to the third-order roots in the four palms they studied, with 
certain exceptions in Phoenix spp., where the root colonization is restricted to the entire root cortex. Therefore, 
future emphasis on AMF root colonization concerning root structure is desirable.  
Additionally, roots that are colonized by AMF and that are not may be present in the same root system in certain 
plants. Large lateral roots' tissue composition and plasticity are responsible for a high preference for AMF for 
colonization [141]. For example, in rice, AMF colonization is primarily limited to large lateral roots and rarely 
found in crown roots, whereas it is often absent in fine lateral roots [141, 142]. Limiting certain specific 
branches alone to colonization can affect colonization levels in the entire root system [143]. Usually, a particular 
region of the root is selected by AMF, usually after a molecular dialogue between the host and symbiont [140]. 
Therefore, investigations on the association of AMF concerning root morphology and root architecture in palm 
roots are significant. It is also attributed to the differential regulation of genes controlling anatomical or 
physiological properties of roots [144]. Genotypic variation in AMF dependency is reported in seedlings of 
coconut palms [62] and oil palms [39]. Clement and Habte [145] demonstrate the existence of genotypical 
variations in AMF dependency in Bactris gasipaes similar to that of oil palms.  
AMF association in palms with intercrops 

Although many authors have found AMF colonization and spore density of mixed crop systems is higher than 
that of monocultures [146, 147, 148], studies on the impact of intercropping on AMF association in palm fields 
is limited. Rajeshkumar et al. [55] reported that in coconut, AMF spore density, species richness, and 
colonization rate are higher in a mixed crop system than in its monocultures. Similarly, Ambili et al. [54] 
observed increased spore counts in the coconut fields, concerning an increase in the number of intercrops there. 
In date palms, mixed cropping with sorghum has shown a significant increase in the intensity of AMF root 
colonization and spore count in the field [148]. However, firm generalizations are impossible with this limited 
number of reports. The beneficial influences of intercropping on root colonization, growth, and productivity of 
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cultivated palms need to be standardized concerning specific intercrops, soil types, climate, and seasons for 
productive utilization of specific intercrops in palm fields. 
Seasonal variation of AMF communities in Palms  
The development of the mycorrhizal association, especially the extent of AMF root colonization, is influenced 
by season [149]. Root colonization usually decreases with more extreme or rapid environmental changes. 
Moreover, seasonal environmental changes affect plant phenological events, which can precisely influence the 
pattern of AMF colonization [150]. However, it may be noted that many palms, such as coconut, are perennial 
and reproduce continuously upon attaining maturity. The difference between the host’s vegetative and 
reproductive growth on root colonization in such palms may be recognized by examining the difference between 
young and mature palms only. However, in perennial palms such as Borassus flabellifer Linn., which reproduce 
only seasonally [151] and in monocarpic palms such as Corypha umbraculifera Linn. which reproduces only 
once in lifetime [152], the difference of the influences of host’s reproductive and vegetative growth on root 
colonization can be studied per respective seasons of vegetative or reproductive growth.  
Although observations of seasonal variations in AMF root colonization in palms are plenty [46, 64, 70, 76, 78, 
87, 88, 94, 95], the details of specific seasonal factors such as temperature or water availability or duration of 
winter or summer influencing AMF in palms are not thoroughly investigated.  
Generally, the AMF root colonization in palms increases with favourable growth conditions. In date palms, root 
colonization rises in the wet season, and AMF spore abundance in the dry season [87]. According to these 
authors, root colonization is high in the wet season because of the active vegetative growth of date palms.  
Usually, in annual crops [153] and many trees [154], a high root colonization rate is observed in the monsoon 
season, whereas high spore density in the dry winter season or summer season respectively. However, a 
contradictory observation is available in legumes where high levels of colonization and spore density are found 
in the summer [155]. Compared to the number of studies on annual crops and other trees, studies on seasonal 
influences on AMF activities in palms are limited.  Moreover, the seasonal environmental characteristics may 
not be identical in all geographic regions. The summer may be wet in one region but dry in another region. In 
general, plant growth rate and root colonization rate depend on temperature and water availability. If water 
availability is not hindered, root growth is most intense in palms in the warm season [156]. Therefore, seasonal 
fluctuation in AMF colonization needs to be assessed based on seasons concerning water availability and the 
extent of temperature variations over seasons. 
 It is well-known that a difference in the relative growth of root and AMF per season can cause a seasonal 
difference in the degree of root colonization in plant roots [157]. Seasonal variations in AMF root colonization 
may also be due to differences in plant and fungal identities and plant phenological or temporal climatic or 
edaphic reasons [158]. The amount of available phosphorus and soil water availability in the fields are edaphic 
factors affecting root colonization in the hosts. Accordingly, Zougari-Elwedi et al. [88] showed a high rate of 
mycorrhizal root colonization (hyphae, vesicles, and arbuscules) in the summer season, the period of its active 
growth in the area characterized by sporadic rains, which boost plant growth and fungus colonization. The 
abundance of arbuscules is an indicator of nutrient demand in the host. Moreover, the authors observe a low root 
colonization rate and abundant sporulation of AMF in the same palms in the winter when palms are in a 
dormant growth stage.  
It is natural that when the fungus sporulates in the winter, they require a carbon supply from its hosts for spore 
formation, which negatively affect new hyphal growth in such an unfavourable season of plant growth when 
plants cannot share extra nutrition with the symbiont. Lara-Pérez et al. [78] observe a similar trend in the 
seasonal behaviour of AMF in coconut palms. In the wild palms also, the same trend is found [94]. Similar 
tendencies of high root colonization in the rainy or growing season and high spore density in the summer are 
observed for other palms, such as Desmoncus orthacanthos, in other studies [46, 98]. Velázquez et al. [76] 
report the seasonal variation of AMF spore abundance in palm forests.  Palm species differ in their growth 
patterns; caulescent and acaulescent palms exist [159]. Accordingly, we can conclude that the season favouring 
plant growth (acaulescent or caulescent, depending on species) in most palms also favours AMF root 
colonization.  
Unlike the literature reports of a high percentage of root colonization in many palms in wet seasons, as 
mentioned above, Auliana and Kaonongbua [64] report a low rate of mycorrhizal colonization percentage in oil 
palms in the rainy season. They attribute the low colonization rate to the low adaptation level of mycorrhizal 
spores in soils in the rainy season.   Fabian et al. [70] reports the highest percentage of AMF root colonization at 
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the beginning of the dry season in the roots of a palm, Acoelorraphe wrightii, but the highest number of AMF 
spores at the onset of the rainy season. According to them, the species richness of AMF in the palm rhizosphere 
is controlled by the dispersion mechanisms of AMF. Moreover, surrounding vegetation and high environmental 
heterogeneity also affect AM fungal species richness in the field. Similarly, root colonization and spore density 
in the roots of Bactris gasipaes (peach palm) in the monoculture systems were high in the dry seasons [95].  
Therefore, it may also be concluded that seasonal variations of AMF activity in palms depend on factors other 
than soil moisture content or temperature of a season. The lack of correlation between mycorrhizal colonization 
and rhizospheric spore density in most studies suggests that spore count depends on differential seasonal 
influences on the host and the symbiont. However, proper generalization of seasonal impacts on AMF in palms 
is impossible based on the currently available limited studies. Therefore, AMF root colonization patterns and 
growth responses in palms concerning seasonal variations of environmental factors, including water and nutrient 
availability and temperature from diverse climatic zones, have become desirable for determining a generalized 
optimum soil and other ecological conditions for the best AMF activity in palms.  
The beneficial role of AMF in palms  

The thick roots without fine root hairs in palms [160] limit the absorption of nutrients from the soil. According 
to Baylis' hypothesis [161], trees such as palms having root systems with coarse, little-branched, and hairless 
terminal roots have a high mycorrhizal association with mineral nutrition, even in fertile soil. Experimental 
studies have confirmed the beneficial roles of AMF in date palms, oil palms, and coconuts [56, 162, 163]. The 
variations in the extent of the positive impacts of AMF in different palms, as expressed in the literature, are 
depicted in Figure 3. 

 

Fig. 3 Diagrammatic representation of mycorrhizal benefits in diverse palms so far discussed in the literature.  

It is clear from Figure 3 that the existing literature on AMF in palms substantiates its positive, beneficial role in 
promoting vegetative growth, productivity, and overcoming environmental stress in palms. The literature on the 
valuable roles of the application of AMF in palm growth and productivity is summarized in Table 3. 
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Table 3: Literature on the beneficial role of the application of arbuscular mycorrhizal fungi individually or in 
consortia with other AMF or beneficial microbes in palm growth and productivity  
Palms AMF/consortia/ PGPR Beneficial roles (positive 

impacts) observed  

 

References 

Acoelorrhaphe wrightii 

 

AMF inoculum1 

 

Increase growth parameters and 

mineral nutrition 

[164]  

Archontophoenix  

alexandrae  

AMF consortium2  

 

 

Increase growth parameters and 

biochemical traits. 

[165]  

Bactris gasipaes  

 

Glomus aggregatum6 Increase biochemical traits [145]  

Coccothrinax 

argentata  

 

AMF inoculum1 

 

Increase growth parameters and 

biochemical traits. 

[164]  

Cocos nucifera 

 

 

AMF consortium3 

 

Increase growth parameters  [125]  

AMF consortium4 with NPK 

fertilizer  

Increase growth parameters and 

biochemical traits. 

[126]  

Native AMF consortium 

with 13 species; Commercial 

AMF mix of Rhizophagus 

intraradices and 

Acaulospora colombiana  

Increase growth parameters  [163]  

 

Desmoncus 

orthacanthos 

AMF inoculum5  Increase growth parameters and 

biochemical traits 

[98, 166]  

Increase growth parameters and P 

uptake. 

[167]  

 

Elaeis guineensis 

 

 

Indigenous AMF spp.  Increase growth parameters and 

mineral nutrition.  

[39]  

Glomus sp. 

 

Increase in fertilizer use 

efficiency in palm seedlings  

[168]  

Glomus manihot6 

Entrophospora columbiana1 

Acaulospora mellea 

Acaulospora appendicula2 

Increased growth parameters and 

nutrient uptake reduced the 

mortality rate of oil palm clones. 

 

[169]  

 

 

 

AMF species belong to the 

Gigaspora and Glomus 

genera 

Increase growth parameters and 

mineral nutrition 

[31]  

Glomus etunicatum4 Increase growth parameters and 

leaf K content 

[17]  

 

Glomus intraradices6 Increase growth parameters  [99]  

Glomus etunicatum4 Increase growth parameters  [170]  

Isolates of Entrophospora 

sp. and Glomus sp.  

Increase growth parameters  [100]  

 

Gigaspora sp. MV16, 

Glomus sp. MV7, Gigaspora 

sp. MV16 isolate + Glomus 

sp. MV7  

Increase growth parameters  [171]  

Glomus sp.; Mixture of 

Gigaspora sp.+ 

Entrophospora sp. 

Increase growth parameters and 

nutrient uptake  

[42]  

Glomus etunicatum4 with 

Trichoderma harzianum  

Increase growth parameters  [101]  

Indigenous mycorrhizae 

(Glomus sp.16) + organic 

Increase growth parameters and 

nutrient uptake  

[102]  
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fertilizer (cow manure) 

Glomus spp. + P fertilizers Increase growth parameters  [172]  

 

AMF consortium6  Increase growth parameters  [135]  

AMF consortium7 Increase growth parameters  [103]  

Rhizophagus intraradices, 

Rhizophagus clarus + 

Endophytic bacteria 

(Pseudomonas aeruginosa) 

Increase growth parameters and 

nutrient uptake 

[56]  

 

Euterpe edulis 

 

MF consortium2 

 

Increase growth parameters and 

biochemical traits. 

[165]  

Rhizophagus clarus; AMF 

Consortium8 

Increase growth parameters and 

mineral nutrition  

[41]  

Euterpe oleracea  

 

Scutellospora gilmorei3, 

Acaulospora spp., 

Gigaspora margarita 

Entrophospora colombiana1 

Increase growth parameters and 

nutrient uptake  

[173]  

 

Phoenix dactylifera 

 

 

Glomus deserticola7 Increase mineral absorption  [174]  

Glomus monosporus5, 

Glomus clarus6 

Glomus deserticola7, 

Aoufous consortium9 

Increase growth parameters  [175]  

 

 

Glomus spp. Increase growth parameters and 

nutrient uptake.  

[40]  

Glomus intraradices6; 

Native Complex Aoufous 

(stains of Glomus mossese) 

Increase growth parameters  [176]  

 

Glomus verriculosum5, 

Glomus fasciculatum6, 

Glomus intraradices6 

Increase growth parameters and 

biochemical traits  

[127]  

 

Aoufous consortium10, 

Glomus monosporus5, 

Glomus clarus3 

Increase growth parameters, 

biochemical traits, physiological 

traits, and nutrient uptake.  

[177]  

 

  

Aoufous consortium10, 

Glomus monosporus5, 

Glomus clarus6 

Increase growth parameters, 

physiological traits, and mineral 

nutrition.  

[178]  

 

  

Aoufous consortium10, 

Glomus monosporus5, 

Glomus clarus6 

Increase growth parameters [179]  

Glomus iranicum + 

compost; Glomus iranicum 

Increase growth parameters, 

biochemical traits, and mineral 

nutrition  

[180]  

Glomus mosseae5 + some 

strains of phosphate-

solubilizing bacteria (PSB) 

Increase growth parameters and 

nutrient uptake 

[129]  

 

 

Rhizophagus intraradices 

 

Increase growth parameters, 

biochemical traits, and nutrient 

uptake  

[128]  

 

 

Rhizoglomus irregulare, 

AMF consortium2  

+ PGPR + Compost  

 

Increase growth parameters, 

biochemical traits, physiological 

traits, and nutrient uptake.  

[131]  

 

 

Rhizoglomus irregulare + 

Seaweed extract (SWE) 

Increase growth parameters, 

biochemical traits, physiological 

traits, and nutrient uptake.  

[132]  

 

 

Rhizoglomus irregulare + 

compost 

Increase growth parameters, 

biochemical traits, physiological 

[133]  
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traits, and nutrient uptake.  

 

Complex Aoufous (CAF)11 

Increase growth parameters, 

physiological traits, and nutrient 

uptake 

[181]  

 

 

Aoufous mycorrhizal 

consortium (AMC)10 

 

Increase growth parameters, 

biochemical traits, physiological 

traits, and nutrient uptake. 

[130]  

Mycorrhizal Aoufous 

Consortium (MAC)10 + 

compost 

 

Increase growth parameters, 

biochemical traits, physiological 

traits, and nutrient uptake. 

[182]  

Diversispora aurantia Increase growth parameters [91]  

AMF consortium + 

indigenous PGPR+ Compost 

Increase growth parameters, 

biochemical traits, physiological 

traits, and nutrient uptake. 

[162]  

 

 

Sabal palmetto 

 

AMF inoculum1 

 

 

Increase growth parameters and 

nutrient uptake.  

[164]  

Senenoa repens AMF inoculum1 

 

Increase growth parameters and 

nutrient uptake. 

[164]  

 

No. 1 to 11: Details of AMF consortia mentioned in the table: (1) heavily colonized root fragments and many 
AMF spores belong to the genus Gigaspora, Scutelospora and Glomus; (2) mixture of Acaulospora koskei, 
Scutellospora heterogama, Gigaspora albida and Rhizophagus clarum; (3) mycorrhizal hyphae, infected root 
bits and viable spores of fungi belong to the genera Acaulospora, Gigaspora, Glomus and Scutellospora; AMF 
consortium (4) Glomus sp., Funneliformis sp., Acaulospora sp., Gigaspra sp., and Scutellospora sp.; (5) 
infected root bits, spores and extraradical mycelium; (6) mixture of Glomus sp., Entrophospora sp. and 
Gigaspora sp.; (7) mixture of Glomus sp., Gigaspora sp., Acaulospora sp., and Entrophospora sp.;   (8) 
Rhizophagus clarus and Claroideoglomus etunicatum; Aoufous consortium  (9) Mixture of native species of 
Glomus sp., Sclerocystis sp., Scutellospora sp.  and Acaulospora sp.; (10) Aoufous consortium - mixture of 
native species of Glomus, Sclerocystis and Acaulospora; (11) Complex Aoufous (CAF) mixture of native 
species of Glomus clarum, Glomus deserticola  and Glomus monosporus. 
New names of the AMF species according to the current taxonomy: 1Acaulospora coloumbiana; 2Ambispora 
appendicula; 3Cetraspora gilmorei; 4Entrophospora etunicata; 5Funneliformis monosporus, F. mosseae, F. 
verruculosus; 6Rhizophagus aggregatum; R. clarus; R. fasiculatus; R. intraradices; R. manihotis; 7Septoglomus 
deserticola. 
In general, the AMF has a multifunctional role in the growth and production of plants, especially by enhancing 
nutrient uptake such as phosphorus [183, 184], which is the limiting resource for plants [185, 186, 187] in many 
soils. It is evident from Table 3 that AMF plays a significant role in the accumulation of major and minor 
nutrients in palms.  However, unlike other crops, AMF role in palms is reported from AMF-inoculated palm 
seedlings in acquiring high amounts of nitrogen, potassium, phosphorus, zinc, and copper from the soil [31, 39, 
40]. The early AMF symbiosis in palms may be decisive in the palm's later survival and growth [44, 91]. 
However, monitoring studies on the early root colonization of AMF in palm seedlings to later stages of palm 
growth and productivity are not available in the literature. Since several species of palms are long-lived 
perennials requiring a high demand for nutrients for growth and fruit production [44, 188], such studies have 
become significant. Moreover, the beneficial effects of AMF on palm growth and productivity are based on 
experimental investigations in the seedlings of a few cultivated palms, such as date palms, followed by oil and 
coconut palms alone.  
Janos [189] examined the influence of the seed size on AMF association in many species of plants and found 
that plants with large seeds have developed an extensive root system with the support of a high amount of seed 
reserves for later higher or better AMF association in them than the small-seeded plants. According to him, 
obligate-mycorrhizal tropical species, in general, are large-seeded. Although further studies on the influence of 
seed size on the beneficial roles of AMF in palms are not available in the literature, later studies in other plants 
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show that annuals and perennials do differ in AMF association concerning seed size [190]. In legumes, large-
seeded plants are less likely to have AMF association than small-seeded plants [191]. However, in commercially 
cultivated palms such as coconut, the available literature is insufficient to reveal the exact beneficial role of 
AMF on palm productivity.  
The beneficial roles of mycorrhiza can be best explained by plant dependency and responsiveness to 
mycorrhizal inoculations. Mycorrhizal dependency is a constitutive property of plant species or genetically fixed 
plant traits, whereas mycorrhizal responsiveness and effectiveness are emergent properties dependent on plant 
and fungal species [30]. According to the author, dependency refers to the inability of a plant to grow without 
mycorrhiza below a critical level of P in soils. In contrast, responsiveness refers to a plant's growth rate with and 
without mycorrhiza at any level of P in soil.  The cultivated palm varieties, especially in coconut, may differ in 
their dependencies as it is a genotype character. However, responsiveness depends on the kind of AMF species 
colonized in the roots and soil and other environmental characteristics where the palm grows. The slow growth 
of palms is one of the bottlenecks in assessing their mycorrhizal dependency or responsiveness through 
measuring morphometric growth parameters. Since mycorrhizal assistance in growth enhancement mainly 
comes from enhancing P uptake in the host, P content in the leaves can be a good indicator of mycorrhizal 
association in plants [123]. Therefore, variations in P levels in palm leaves concerning different palms or 
varieties of a single palm in identical soil and climatic conditions with or without mycorrhiza may reveal 
dependency because mycorrhiza-dependent species will have the least P content in leaves without mycorrhiza. 
In contrast, a change in the P level in the leaf of a particular species of a variety of palm under different soil or 
climate conditions with identical and different AMF species may show a difference in responsiveness.  
Overall, AMF studies in palms concerning different soils, seasons, and agroclimatic zones are required. The role 
of specific AMF in palm productivity under diverse soil environments is also a significant theme to explore, 
especially in using AMF as a biological tool in the sustainable cultivation of palms. However, there are positive 
roles of AMF application in the seedling stage for seedling survival [189] and at tree maturity in Litchi chinensis 
Sonn. [192], but such investigations have not yet been done in palms. Therefore, long-term monitoring 
investigations on the beneficial roles of AMF in palms are more desirable.  
Moreover, several studies suggested that indigenous AMF are suitable for development as palm biofertilizers 
[102, 163]. However, such beneficial indigenous species may not exist in all the fields because of unfavourable 
agricultural practices or other soil conditions in many cultivated fields. Therefore, further focus on exploring the 
diversity of AMF in economically beneficial palms in wild unaffected environments has become desirable. 
Exploration of the valuable roles of indigenous AMF from undisturbed natural soils and AMF root associates of 
unexplored species of palms, especially wild palms, have also become important in identifying the valuable 
indigenous species for cultivated palms. Such studies may enable us to distinguish between the weedy and the 
desirable indigenous species of AMF in palms. Soil conditions favouring the indigenous AMF in palm groves 
must also be understood. Experimental studies are required to understand the valuable environmental and other 
variables concerning the optimum benefits of AMF in palms in cultivated fields. However, since AMF 
sometimes acts negatively on certain plants, especially in manganese (Mn) absorption [193], intensive 
experimentation of specific AMF in palms has become desirable before general recommendations of indigenous 
or other specific AMF in typically cultivated palms of specific soil environmental conditions.  
Many reports explain the beneficial role of AMF in the establishment of an in vitro culture of palm plantlets. 
Schultz [169] reported the positive effects of AMF, such as improvement in the survival rate, growth 
parameters, and mineral nutrition in micro-propagated oil palm seedlings. According to Sundram [17], Glomus 
etunicatum Błaszk., B.T. Goto, Magurno, Niezgoda & Cabello is the most successful single species inoculum in 
establishing a symbiotic association in oil palm seedlings at the nursery stage, positively affecting their 
vegetative growth. Galindo-Castaneda and Romero [99] reported that Glomus intraradices C. Walker & 
Schuessler potentially increased the seedling vigour at the early stages of oil palm seedlings when transplanted 
to the main nursery. According to Kartika et al. [102], inoculation of indigenous mycorrhizae mixed in cow 
manure increased the growth of oil palm seedlings under pre-nursery conditions. Rini et al. [103] report that the 
application of AMF can reduce the dose of fertilizer requirement for oil palm seedlings in nurseries. 
Ilangamudali and Senarathne [125] confirmed the utility of AMF-based biofertilizers in the early growth of 
coconut seedlings, especially in producing high-quality coconut seedlings with well-developed root systems for 
good field establishment. According to Sulistiono et al. [126], the combined application of AMF with NPK 
fertilizer can increase root growth and nitrate reductase activity in transplanting coconut seedlings, especially at 
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their early growth stage. Gomez-Falcon et al. [163] reported the beneficial role of native AMF species in the 
growth and survival of micro-propagated coconut plantlets. Kinany et al. [180] reported AMF Glomus 
iranicum's (= Rhizophagus iranicus) positive role in improving the growth and nutrition of micro-propagated 
date palm plantlets. Hilali et al. [105] said the beneficial role of AMF Rhizophagus irregularis (Blaszk., Wubet, 
Renker and Buscot) C. Walker and A. SchuBler = Glomus intraradices in-vitro cultured date palm plantlets, 
especially in developing a more extensive root system. Besides these cultivated palms, the valuable role of AMF 
in the field establishment of palms like Desmoncus orthacanthos [166, 167], Archontophoenix alexandrae and 
Euterpe edulis [41, 165] are also available in the literature.  
The AMF association enables palms to overcome diverse environmental stresses such as drought and salinity. In 
general, AMF in the soil can enhance the stabilization of soil aggregates, increase nutrient availability and water 
uptake [33, 103, 194], and thereby help palm growth and productivity. In general, water scarcity and salinity 
adversely affect the yield and productivity of palms [195, 196, 197]. However, only limited studies are available 
on the beneficial role of AMF in palms under such stressed environmental conditions. Most such studies are 
related to date palms, followed by oil palms. A critical summary of the limited experimental studies using AMF 
to alleviate the detrimental effects of drought and salinity in palms is summarised in Table 4. In general, such 
positive influences of AMF are attributed to a general improvement in the vigour of hosts by increasing growth 
parameters, mineral nutrition, water relations, stomatal conductance, synthesis of antioxidants, pigments, and 
similar stress-resistant secondary metabolites, and alleviation of free radical accumulation in the hosts [198, 
199].  

Table 4: Literature on the beneficial role of the application of AMF individually or in consortia or with other 
beneficial microbes for alleviating various abiotic stresses in Palms. 
Name of Palms  AMF species Type of soil Beneficial influence  References 

Elaeis guineensis 

(Oil palm) 

3AMF consortium  Increase growth parameters [135]  

Phoenix dactylifera 

(Date palm) 

2Complex Aoufous 

(CAF) 

Sand Increase growth parameters, mineral 

nutrition, and water relations 

[181] 

Elaeis guineensis 

(Oil palm) 

2Glomus 

intraradices 

 

Loamy soil Increase growth parameters and 

physiological traits 

[176]  

1Aoufous 

consortium 

 
1Glomus 

monosporus 
2Glomus clarus 

Sandy soil  Increase growth parameters, 

biochemical traits, water relations, 

and nutrient uptake. 

[177]  

1Aoufous 

consortium  
1Glomus 

monosporus 

2Glomus clarus 

Sandy soil  Increase growth parameters, Water 

parameters, and Mineral nutrition  

[178]  

Rhizophagus 

intraradices 

Sand and 

Soil 

Increase growth parameters, 

biochemical traits, and nutrient 

uptake 

[128]  

 

1Aoufous 

consortium 
1Glomus 

monosporus 
2Glomus clarus 

Sandy soil Increase growth parameters and 

water relations 

[179]  

Rhizoglomus 

irregulare, 1AMF 

A mixture of 

sand, clay, 

Increase growth parameters, 

biochemical traits, physiological 

[131]  
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consortium   

+PGPR + Compost 

and loam 

soil  

traits, and nutrient uptake. 

AMF complex+ 

PGPR 

Sand  Increase biochemical and traits, 

physiological traits  

[200]  

Aoufous 

consortium + 

PGPR+ organic 

amendments 

 Increase growth parameters, 

biochemical traits, water relations, 

and nutrient uptake. 

[162]  

Elaeis guineensis 

(Oil palm) 

AMF+Talaromyces 

pinophilus 

Saline soil  Increase growth parameters and P 

uptake  

[201]  

Phoenix dactylifera 

(Date palm) 

2Glomus 

fasciculatum 
2Glomus 

intraradices 

Sandy  Increase growth parameters and 

biochemical traits 

[127]  

1Glomus mosseae + 

PGPR (in the 

presence of 

Putrescine) 

Reclaimed 

saline soil 

Increase growth parameters and 

biochemical traits 

[202]  

1Aoufous 

consortium  

1Glomus 

monosporus 
2Glomus clarus 

Sandy  Increase growth parameters and 

physiological traits  

[179]  

Aoufous 

mycorrhizal 

consortium (AMC)1 

Sand Increase growth parameters, 

biochemical traits, physiological 

traits, water parameters, and nutrient 

uptake. 

 

[130]  

1Mycorrhizal 

Aoufous 

Consortium (MAC) 

+ compost 

Sand  Increase growth parameters, 

biochemical traits, physiological 

traits, water parameters, and nutrient 

uptake. 

[182]  

Rhizophagus 

irregularis 
1Aoufous 

consortium 

(PGPR+ Compost) 

 Increase growth parameters, 

biochemical traits, and physiological 

traits 

[203]  

AMF complex  Sandy  Increase growth parameters, 

biochemical traits, and nutrient 

uptake 

[197]  

 

1Mixture of Glomus sp., Entrophospora sp., and Gigaspora sp.; 2Complex Aoufous - mixture of native species 
of Glomus clarum, Glomus deserticola, and Glomus monosporus; 3Aoufous consortium - mixture of native 
species of Glomus, Sclerocystis and Acaulospora. New names of AMF species according to the current 
taxonomy: 1Funneliformis monosporus; F. mosseae; F. verruculosus; 2Rhizophagus clarus; R. intraradices; R. 
fasiculatus; 3Septoglomus deserticola. 
The combined application of AMF as a consortia or along with other beneficial microbes and fertilizers enables 
palms to overcome drought and salinity. It is well-known that combined AMF and microbial symbionts can 
boost palm growth under drought and saline conditions and potentially alleviate the detrimental effect of these 
stresses on palm growth. However, a specific study concerning the role of AMF in overcoming the damaging 
effects of drought and salt stress in palms is not available in the literature except for a study on coconut [63]. 
Therefore, investigations on the particular role of specific AMF in palms in overcoming environmental stress 
need to be put into emphasis in the future. 
Different diseases and pests considerably affect palm growth and productivity [204, 205, 206]. AMF helps 
reduce the disease severity, and some AMF species can even protect plants from various diseases [207, 208, 



Sreeja and Ray / Alger. j. biosciences 05(02) (2024) 067–103                                                                                                86 

 

 

209] and root pathogens [210]. All the research reports showing the positive influence of AMF in palms against 
diseases are summarised in Table 5.  

Table 5: Literature on the beneficial role of the application of arbuscular mycorrhizal fungi individually or in 
consortia with other beneficial microbes in palms as biocontrol agents 
Name of 

Palms 

Active against 

diseases 

AMF/ AMF consortia or 

with other microbes 

Beneficial role References 

Elaeis 

guineensis 

(Oil palm) 

Basal stem rot 

(BSR) caused 

by Ganoderma 

boninense 

Glomus intraradices2 and 

Glomus clarum2 + 

endophytic bacteria (EB) 

Reduce disease development 

(used as a biocontrol agent) 
[211, 212]  

AMF + Trichoderma spp. Reduce disease severity [213]  

AMF spp. Controlling disease [214]  

Phoenix 

dactylifera 

(Date palm) 

Bayoud disease 

 

[Fusarium 

oxysporum f. sp. 

albedinis (Foa)] 

Glomus monosporus1 

Glomus clarus2 

Aoufous consortium1  

 

 

Reduce disease severity 

Increase shoot height, biomass, 

and leaf number 

Stimulate the activities of 

Défense-related enzymes 

Reduce mortality rate 

[175]  

 

 

Glomus monosporus1 

Glomus deserticola3 

Glomus clarus2 

Aoufous consortium1  

 

 

Improve defense responses by 

stimulating the accumulation of 

hydroxycinnamic acid 

derivatives. 

[215]  

Aoufous consortium1  

 

Glomus monosporus1 

Glomus clarus2 

Improve tolerance by improving, 

Water parameters  

Biomass production 

Mineral nutrition (P, Ca, Mg, K, 

Mn, Na, and Cu) 

Reduce mortality rate 

[178]  

Aoufous consortium1  

 

Glomus monosporus1 

Glomus clarus2 

Improve growth parameters 

under disease conditions 

Reduce mortality rate 

[179]  

Aoufous consortium1  

 

Induce resistance by enhancing 

nutrient contents, phenolic 

compounds, and peroxidase 

activities. 

Reduce mortality rate 

[216]  

Glomus mosseae1+ 

Trichoderma harzianum 

Enhance palm resistance to Foa 

by stimulating the peroxidase 

activities. 

[217]  

 

AMF consortium mentioned in the table: 1Aoufous consortium - mixture of native species of Glomus sp., 
Sclerocystis sp., Scutellospora sp., and Acaulospora sp.; Name of AMF species according to the current 

taxonomy: 1Funneliformis monosporus; F. mosseae; 2Rhizophagus clarus; R. intraradices; 3Septoglomus 
deserticola. 
It is evident from Table 5 that AMF positively influences an increase in the palm's resistance to diseases. Such 
symbiotic supports include AMF’s positive influence on mineral nutrition and water relations [162, 178], 
increasing the vigour or resistance of host plants against diseases [214, 218], and stimulating the activity of 
enzymes and antioxidants [213, 216].  Several studies reveal that AMF is helpful against insect attacks on plants 
[219, 220] by improving their vigour. AMF are also beneficial to plants in resisting soil-borne plant pathogens 
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[221, 222]. Although palms are resistant to pests [117], specific studies on the role of AMF association 
concerning pest control on palms are not available in the existing literature.  Researchers generally suggest 
using AMF as a biocontrol agent in date palm and oil palm, especially in controlling Bayoud disease and basal 
stem rot diseases. However, no studies are yet available on the role of AMF in preventing some severe 
infections currently prevailing in coconuts, such as root wilt disease.  
Additionally, although AMF are identified as an essential natural biological partner in plants for alleviating 
heavy metal toxicities [223] and overcoming soil degradations of diverse kinds [224] such reports explaining 
AMF's influence on alleviating environmental toxicities in palms or roles of AMF in overcoming soil 
degradations in palm groves are not available in the literature. It may be noted that nowadays, palms are 
cultivated using treated wastewater [225], where the stress from toxic or stressful minerals in the wastewater 
may be overcome using suitable AMF. Therefore, experimental studies on wastewater treatment in palm fields 
combined with suitable AMF species have become desirable. 
Overall, a critical literature analysis on various beneficial roles of AMF in palms reveals that AMF can 
contribute to palm-sustainable cultivation by avoiding environmental degradation from excessive agrochemical 
applications in palm fields. However, the availability of literature in this regard is limited when compared to 
palm diversity and the diversity of agroclimatic regional variations in palm cultivation. Therefore, intensive 
field and experimental investigations on the specific role of AMF in reducing the application of chemicals in 
palm groves, especially by improving pest and disease resistance in palms, have become desirable. Moreover, 
field surveys have become significant on variables concerning specific AMF for identifying their disease -
controlling roles in palms under specific climatic and soil conditions.  
Studies on the effect of environmental and other variables concerning AMF in palms 

The nature and intensity of AMF association in plants can vary depending on the plant species characteristics 
(root structure, seed weight, life history), fungal species, and environmental factors such as habitat type, soil 
fertility, soil pH [190], nutrient and water availability [226, 227]. The growth response of plants to AMF 
colonization [30] may be either beneficial mutualism or harmful parasitism [226, 228], but often a mutualism-
parasitism continuum [229]. The factors influencing the success of AMF symbiosis or proper root colonization 
for beneficial influence in plants may be categorized into internal (symbiont) and external environmental 
variables. In palms, direct studies emphasizing factors influencing AMF association are unavailable, but some 
indirect mentions are available in the existing literature. They are as follows; 
Internal variables 

Internal variables such as host-specific plant phenological and genetic characteristics and fungal species-specific 
characteristics control the success of AMF association in plants. Therefore, the internal variables can be 
categorized into plants and fungal variables [230].  
Plant variables 

Plant variables such as root structure, genotype, and phenology significantly affect successful AMF symbiosis 
[230] in palms. Generally, plants with graminoid finely branched roots with a dense cover of long root hairs 
respond to mycorrhizae only in phosphorus-deficient soil. However, St. John's [231] re-examining Baylis's 
hypothesis with tropical trees suggested that magnolioid trees devoid of root hairs are moderately or heavily 
infected with mycorrhizal fungi. Janos [30] explains how plant responsiveness and dependence on mycorrhizas 
are decisive in beneficial AM symbiosis. Depending on the morphological (root structure) or physiological 
traits, plants show a wide range of growth responses to AMF. Later, Liu et al. [232] found that tree species with 
thick and poorly branched roots respond more to AMF symbiosis than trees with finer roots. According to the 
authors, plant species vary in their plasticity to root morphological or architectural patterns concerning NPK in 
soils, affecting mycorrhizal crops' effectiveness because plants favour roots over mycorrhizal fungi in nutrient-
rich soils. Reports also suggest that domestication has reduced crop responsiveness to AMF over the years, and 
breeding programs may address this [233]. However, a positive correlation between root hair density and AM 
root colonization in trees is also known [234].  
Many authors describe the root architecture of palms, mainly oil palms, in detail [235, 236, 237, 238]. 
According to these authors, the first-order (R1) roots belong to primary (radicle or embryonic) and adventitious 
types, which are ortho-gravitropic or dia-gravitropic. The primary embryonic (R1) roots do not last, but the R1 
adventitious roots continuously arise for years. Lateral roots constantly emerge from the first-order roots (R1), 
called second-order roots (R2), with vertical upward, downward, or horizontal growth. The lateral roots of the 
R2 are the R3 roots, and further branching of the R3 forms the R4 roots, which are agravitropic. In general, all 
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the studied palms show more or less a similar root architecture. A critical analysis of the existing literature 
revealed that the AMF structures, such as the hyphal coils, vesicles, and arbuscules, are most frequently 
observed in the thinnest and second and third-order roots of palms [45, 46, 47]. According to them, such roots 
are more susceptible to AMF colonization, and the root colonization is restricted to the inner cortex of such 
roots. However, studies regarding the influence of root structure and AMF colonization are reported only in a 
few palms by the authors, as mentioned above.  
The host plant's phenological stage is another internal variable influencing most plants' AMF community 
structure [239, 240]. However, such studies regarding the palm phenological stage are available in date palms 
only [87]. According to the authors, the plant growth stage strongly influences AMF colonization in date palms. 
Besides the root structure and phenology, the genotype of the host crop also influences the AMF symbiosis in 
the roots of most plants [241, 242, 243]. In palms, such studies regarding the influence of host genotype are very 
few and are mainly reported in coconut [54, 62, 63].  Such studies reveal that root colonization and spore 
abundance in the soils of the native tall cultivars of coconuts is higher than that of dwarf and hybrid varieties. 
The above critical analysis of the current literature on palm plant factors influencing AMF symbiosis reveals 
that more emphasis is required on the theme in research in the future.  
Fungal variables  

Internal fungal variables such as the type of fungal species, its genetic diversity, and its characteristics 
significantly influence AMF symbiosis's success with plants [230, 244, 245]. In palms, the studies regarding the 
influence of different types of AMF species on the success of AMF symbiosis in palms are nominal and are 
mainly reported in date and oil palms [17, 100, 128, 171, 176, 177, 178, 179]. 
External variables 

In addition to internal host-specific and fungal-specific characteristics, local edaphic factors on plant 
responsiveness to AMF have been emphasized continuously [113] in research. Soil environmental conditions 
such as soil structure also influence root growth and, thus, indirectly affect mycorrhizal association in plant 
roots [32]. In addition, external variables such as other plants in the field and other microbes in the soil can also 
affect AMF association in crops, which are called external biological variables [230]. Therefore, the external 
variables can be categorized into environmental and biological variables.  
Environmental variables 

The environmental variables that influence AMF in plants include soil and climatic factors. The soil factors 
include physicochemical soil characteristics such as soil texture, structure, pH, water content, and soil mineral 
nutrients. The climatic factors can include temperature, precipitation, photoperiod, length of summer, winter, 
rain, and humidity. However, the environmental factors act not in isolation but as a complex.  
In the current literature on AMF in palms, some studies are available on the influence of specific edaphic and 
climatic factors on AMF symbiosis in date, coconut, and oil palms. In date palms, the intensity of AMF 
colonization and spore density is influenced by soil pH, soil moisture, electrical conductivity, temperature, 
humidity, mineral concentrations (P, N, Mg, K, and Na), organic matter, and organic carbon [66, 87, 88, 89, 90]. 
Similarly, in coconut and arecanut palms, the AMF spore count and the extent of root colonization are 
influenced by soil pH, EC, soil nutrients (N, P, K,) and organic carbon [54, 55, 71, 126, 163]. Moreover, the 
concentration of nutrients in the host tissue also decides the extent of the AMF species colonizing the plant. 
Thus, the dose of fertilizer applied directly affects the mycorrhizal activity, which may vary with host-fungus 
combinations [60]. The soil pH and P concentrations influence AMF biodiversity in oil palms [64, 168].  
Drought and salinity also affect palm root colonization intensity and AMF spore count. Such studies regarding 
the influence of salinity and drought on AMF symbiosis are reported mainly in date palms [66, 130, 131, 177, 
178, 179, 182, 197, 203].  
Biological variables 

Among the biological and environmental variables, indigenous mycorrhizal species play a significant role in the 
success of AMF association in crops. In a soil environment, coadapted symbionts also influence mycorrhizal 
effectiveness in the field [228]. In the current literature, some studies are available on the influence of other 
microbes and fertilizers on AMF association in date palms [129, 132, 133, 180, 182, 203] and oil palms [64, 
101, 211].  
Additionally, reports on the influence of anthropogenic factors, such as various cropping systems and 
cultivation practices, on AMF activity in palms are available in the existing literature.  Anthropogenic factors 
play a significant role in AMF colonization in palms such as date palms [88, 89], coconut palms [54, 55] and 
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other palms [71, 94, 95]. Therefore, emphasis may be placed on analysing the role of plant-specific 
characteristics such as root traits, AMF-specific characteristics such as local strains and other beneficial 
symbionts in their natural soil environment, and soil conditions on AMF activities in palms. It may enable the 
development of AMF as an ecotechnological tool alternative to chemicalized means in the sustainable 
cultivation of palms. 
4. Conclusion 

The current, thorough, critical analysis of the literature on AMF concerning palm provides the following 
significant findings. 

1.  Although a diversity of about 85 species of AMF is known from 43 studied palms, AMF concerning 
specific cultivated palm varieties of many of their cultivating zones is yet to be explored. AMF in the 
majority of ornamental and wild palms yet remains unknown.  

2. The current literature on AMF concerning palms includes AMF diversity in palm rhizosphere, root 
colonization, spore abundance and spore density in palm fields, seasonal variations in AMF 
characteristics in palms, AMF beneficial roles including nutritional and stress overcoming in palms, and 
some environmental and other variables concerning AMF activity in palms.  

3. The AMF root colonization patterns in palms include Arum, intermediate, and Arum and Paris, which 
are reported in date palm roots. However, Arum and Paris types of root colonization are found in 
coconut concerning the cultivars' field environmental characteristics or varieties.  

4. Studies on AMF association in palms concerning root morphology and root architecture are limited to 
only three studies. The available studies suggest the restriction of root colonization to second or third -
order roots; in such roots, mycelia can be restricted to the inner or outer cortex.  

5. Seasonal variations in the percentage of root colonization and rhizosphere spore density are visible in the 
palms. Generally, root colonization is high in the rainy season, whereas spore density is high in summer. 
However, reports contradictory to the above general findings, particularly on palms, are also available in 
the literature. 

6. Since Janos's first report on the beneficial role of AMF in palms [37], about 47 such studies have shown 
the positive influence of AMF on the growth parameters of palms. The most helpful role of AMF in 
palms is suggested to be the enhancement of mineral nutrition, followed by water availability and 
biochemical production in palms. All such studies in palms are conducted as experiments with seedlings.  

7. About 18 studies explain the beneficial roles of AMF in palms for overcoming environmental stresses 
such as drought and soil salinity. Moreover, about ten studies show the valuable roles of AMF in 
enhancing disease resistance in palms. 

8. Researchers have observed that internal variables such as plant phenological stages, root structure, host 
genotype, and genetic diversity of  AMF, and external variables such as soil pH, soil moisture, soil 
organic carbon, electrical conductivity, mineral composition, and temperature and humidity have a 
significant influence on AMF activity in palms.  

9. Specific experiments have not yet been done to examine the extent of diverse environmental and other 
variables for desirable AMF activity in palms.  

Since imagination and deduction are significant in advancing mycorrhizal research [246] in plants, especially in 
perennial palms, some of the following suggestions are presented for the critical attention of researchers in their 
future studies on AMF concerning palms: 

1. Overall, an intensive global effort on AMF concerning palms may be raised for applying AMF as an 
ecotechnological tool to ensure palm cultivation's sustainability. Such actions contribute to attaining the 
UN's SDGs.  

2. AMF diversity in wild palms and cultivated palms of unexplored zones is essential for accounting for the 
actual AMF diversity concerning palms. 

3. The mycorrhizal dependency, responsiveness, and effectiveness in specific palms, receptivity of specific 
AMF in particular soils, and the mycorrhizal patterns in palms (Arum or Paris or intermediate types) 
concerning all the internal and external variables need specific attention of researchers.   

4. Since studies on AMF root colonization in palms concerning root morphology and architecture are 
limited, specific studies focusing on colonization patterns in diverse palms concerning such root aspects 
are desirable.  

5. Since some studies show that AMF contributes to resistance to diseases and pests in plants, including 
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palms, and since wild palms are resistant to diseases and pests, experimental investigations on the role of 
AMF associates of wild palms in cultivated palms are significant.   

6. Research on internal and external variables concerning beneficial AMF activity in specific palm species 
and soil environments is desirable.   

7. Since the current experimental studies on the beneficial influence of AMF in palms are limited to 
seedling studies, future thrust may be on long-term monitoring of the benefits of such seedling 
inoculation in the productivity of palms later in the fields.  

8. Since monitoring growth parameters is challenging to account for positive AMF influence in many of the 
perennial palms, monitoring leaf P in palms with and without AMF association may be helpful to extract 
the AMF dependency, responsiveness, and beneficial influence in palms.   

9. Experiments on the role of diverse AMF individually and in the consortia of other AMF and other 
beneficial microbes for achieving various beneficial effects in palms, including disease and pest 
resistance, are desirable.  

10. Experiments on the role of AMF in alleviating environmental stress, such as increased temperature, low 
humidity, drought, and salinity, also deserve research attention, especially in the sustainable cultivation 
of economically significant palms as preparedness for anticipating climate changes.   

11. The influence of AMF in alleviating the stress of wastewater irrigation in palms needs further emphasis 
in research because the use of wastewater to cultivate palms is increasing in many arid regions.   

12. Specific intercrops' influence on specific AMF in palms needs further intensive experimentation because 
multi-cropping patterns are more accepted forms of agriculture in ensuring sustainability and enhanced 
carbon sequestration in field soils.  

13. The utility of AMF in conserving endemic, rare, and endangered palms also need emphasis in future 
research. 

Overall, since the success in the use of AMF as a biological tool depends on the environmental complex 
within which they operate, experimental studies with AMF activity concerning various external ecological, 
biological, and internal variables affecting AMF association in all varieties of palms have become desirable, 
especially to achieve sustainability in palm cultivations and palm-based industries. 

Abbreviations and Acronyms 

A: arbuscules,   AC- arbusculate coils  AMF- Arbuscular mycorrhizal fungi    H- hyphae      HC- hyphal coils                 
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